Atomic emission spectroscopy in the context of Spectral line


Atomic emission spectroscopy in the context of Spectral line

Atomic emission spectroscopy Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Atomic emission spectroscopy in the context of "Spectral line"


⭐ Core Definition: Atomic emission spectroscopy

Atomic emission spectroscopy (AES) is a method of chemical analysis that uses the intensity of light emitted from a flame, plasma, arc, or spark at a particular wavelength to determine the quantity of an element in a sample. The wavelength of the atomic spectral line in the emission spectrum gives the identity of the element while the intensity of the emitted light is proportional to the number of atoms of the element. The sample may be excited by various methods.

Atomic Emission Spectroscopy allows us to measure interactions between electromagnetic radiation and physical atoms and molecules. This interaction is measured in the form of electromagnetic waves representing the changes in energy between atomic energy levels. When elements are burned by a flame, they emit electromagnetic radiation that can be recorded in the form of spectral lines.  Each element has its own unique spectral line because each element has a different atomic arrangement, so this method is an important tool for identifying the makeup of materials. Robert Bunsen and Gustav Kirchhoff were the first to establish atomic emission spectroscopy as a tool in chemistry.

↓ Menu
HINT:

In this Dossier

Atomic emission spectroscopy in the context of Flame color

A flame test is a relatively quick test for the presence of some elements in a sample. The technique is archaic and of questionable reliability, but once was a component of qualitative inorganic analysis. The phenomenon is related to pyrotechnics and atomic emission spectroscopy. The color of the flames is understood through the principles of atomic electron transition and photoemission, where varying elements require distinct energy levels (photons) for electron transitions.

View the full Wikipedia page for Flame color
↑ Return to Menu

Atomic emission spectroscopy in the context of Caesium

Caesium (IUPAC spelling; also spelled cesium in American English) is a chemical element; it has symbol Cs and atomic number 55. It is a soft, silvery-golden alkali metal with a melting point of 28.5 °C (83.3 °F; 301.6 K), which makes it one of only five elemental metals that are liquid at or near room temperature. Caesium has physical and chemical properties similar to those of rubidium and potassium. It is pyrophoric and reacts with water even at −116 °C (−177 °F). It is the least electronegative stable element, with a value of 0.79 on the Pauling scale. It has only one stable isotope, caesium-133. Caesium is mined mostly from pollucite. Caesium-137, a fission product, is extracted from waste produced by nuclear reactors. It has the largest atomic radius of all elements whose radii have been measured or calculated, at about 260 picometres.

The German chemist Robert Bunsen and physicist Gustav Kirchhoff discovered caesium in 1860 by the newly developed method of flame spectroscopy. The first small-scale applications for caesium were as a "getter" in vacuum tubes and in the light-sensitive anodes of photoelectric cells. Caesium is widely used in highly accurate atomic clocks. In 1967, the International System of Units began using a specific hyperfine transition of neutral caesium-133 atoms to define the basic unit of time, the second.

View the full Wikipedia page for Caesium
↑ Return to Menu

Atomic emission spectroscopy in the context of Rubidium

Rubidium is a chemical element; it has symbol Rb and atomic number 37. It is a very soft, whitish-grey solid in the alkali metal group, similar to potassium and caesium. Rubidium is the first alkali metal in the group to have a density higher than water. On Earth, natural rubidium comprises two isotopes: 72% is a stable isotope Rb, and 28% is slightly radioactive Rb, with a half-life of 48.8 billion years – more than three times as long as the estimated age of the universe.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy. The name comes from the Latin word rubidus, meaning deep red, the color of its emission spectrum. Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms. Rubidium is not a known nutrient for any living organisms. However, rubidium ions have similar properties and the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.

View the full Wikipedia page for Rubidium
↑ Return to Menu

Atomic emission spectroscopy in the context of Probability amplitude

In quantum mechanics, a probability amplitude is a complex number used for describing the behaviour of systems. The square of the modulus of this quantity at a point in space represents a probability density at that point.

Probability amplitudes provide a relationship between the quantum state vector of a system and the results of observations of that system, a link that was first proposed by Max Born, in 1926. Interpretation of values of a wave function as the probability amplitude is a pillar of the Copenhagen interpretation of quantum mechanics. In fact, the properties of the space of wave functions were being used to make physical predictions (such as emissions from atoms being at certain discrete energies) before any physical interpretation of a particular function was offered. Born was awarded half of the 1954 Nobel Prize in Physics for this understanding, and the probability thus calculated is sometimes called the "Born probability". These probabilistic concepts, namely the probability density and quantum measurements, were vigorously contested at the time by the original physicists working on the theory, such as Schrödinger and Einstein. It is the source of the mysterious consequences and philosophical difficulties in the interpretations of quantum mechanics—topics that continue to be debated even today.

View the full Wikipedia page for Probability amplitude
↑ Return to Menu

Atomic emission spectroscopy in the context of Laser-induced breakdown spectroscopy

Laser-induced breakdown spectroscopy (LIBS) is a type of atomic emission spectroscopy which uses a highly energetic laser pulse as the excitation source. The laser is focused to form a plasma, which atomizes and excites samples. The formation of the plasma only begins when the focused laser achieves a certain threshold for optical breakdown, which generally depends on the environment and the target material.

View the full Wikipedia page for Laser-induced breakdown spectroscopy
↑ Return to Menu