Atmosphere in the context of Meteorological optics


Atmosphere in the context of Meteorological optics

Atmosphere Study page number 1 of 14

Play TriviaQuestions Online!

or

Skip to study material about Atmosphere in the context of "Meteorological optics"


⭐ Core Definition: Atmosphere

An atmosphere is a layer of gases that envelop an astronomical object, held in place by the gravity of the object. The name originates from Ancient Greek ἀτμός (atmós) 'vapour, steam' and σφαῖρα (sphaîra) 'sphere'. An object acquires most of its atmosphere during its primordial epoch, either by accretion of matter or by outgassing of volatiles. The chemical interaction of the atmosphere with the solid surface can change its fundamental composition, as can photochemical interaction with the Sun. A planet retains an atmosphere for longer durations when the gravity is high and the temperature is low. The solar wind works to strip away a planet's outer atmosphere, although this process is slowed by a magnetosphere. The further a body is from the Sun, the lower the rate of atmospheric stripping.

Aside from Mercury, all Solar System planets have substantial atmospheres, as does the dwarf planet Pluto and the moon Titan. The high gravity and low temperature of Jupiter and the other gas giant planets allow them to retain massive atmospheres of mostly hydrogen and helium. Lower mass terrestrial planets orbit closer to the Sun, and so mainly retain higher density atmospheres made of carbon, nitrogen, and oxygen, with trace amounts of inert gas. Atmospheres have been detected around exoplanets such as HD 209458 b and Kepler-7b.

↓ Menu
HINT:

In this Dossier

Atmosphere in the context of Region

In geography, regions, otherwise referred to as areas, zones, lands or territories, are portions of the Earth's surface that are broadly divided by physical characteristics (physical geography), human impact characteristics (human geography), and/or the interaction of humanity and the environment (environmental geography). Geographic regions and sub-regions are mostly described by their imprecisely defined, and sometimes transitory boundaries, except in human geography, where jurisdiction areas such as national borders are defined in law. More confined or well bounded portions are called locations or places.

Apart from the global continental regions, there are also hydrospheric and atmospheric regions that cover the oceans, and discrete climates above the land and water masses of the planet. The land and water global regions are divided into subregions geographically bounded by large geological features that influence large-scale ecologies, such as plains and features.

View the full Wikipedia page for Region
↑ Return to Menu

Atmosphere in the context of Gulf Stream

The Gulf Stream is a warm and swift Atlantic ocean current that originates in the Gulf of Mexico and flows through the Straits of Florida and up the eastern coastline of the United States, then veers east near 36°N latitude (North Carolina) and moves toward Northwest Europe as the North Atlantic Current. The process of western intensification causes the Gulf Stream to be a northward-accelerating current off the east coast of North America. Around 40°0′N 30°0′W / 40.000°N 30.000°W / 40.000; -30.000, it splits in two, with the northern stream, the North Atlantic Drift, crossing to Northern Europe and the southern stream, the Canary Current, recirculating off West Africa.

The Gulf Stream influences the climate of the coastal areas of the East Coast of the United States from Florida to southeast Virginia (near 36°N latitude), and to a greater degree, the climate of Northwest Europe. A consensus exists that the climate of Northwest Europe is warmer than other areas of similar latitude at least partially because of the strong North Atlantic Current. It is part of the North Atlantic Gyre. Its presence has led to the development of strong cyclones of all types, both within the atmosphere and within the ocean.

View the full Wikipedia page for Gulf Stream
↑ Return to Menu

Atmosphere in the context of Physical geography

Physical geography (also known as physiography) is one of the three main branches of geography. Physical geography is the branch of natural science which deals with the processes and patterns in the natural environment such as the atmosphere, hydrosphere, biosphere, and geosphere. This focus is in contrast with the branch of human geography, which focuses on the built environment, and technical geography, which focuses on using, studying, and creating tools to obtain, analyze, interpret, and understand spatial information. The three branches have significant overlap, however.

View the full Wikipedia page for Physical geography
↑ Return to Menu

Atmosphere in the context of Abiotic component

In biology and ecology, abiotic components or abiotic factors are non-living chemical and physical parts of the environment that affect living organisms and the functioning of ecosystems. Abiotic factors and the phenomena associated with them underpin biology as a whole. They affect a plethora of species, in all forms of environmental conditions, such as marine or terrestrial animals. Humans can make or change abiotic factors in a species' environment. For instance, fertilizers can affect a snail's habitat, or the greenhouse gases which humans utilize can change marine pH levels.

Abiotic components include physical conditions and non-living resources that affect living organisms in terms of growth, maintenance, and reproduction. Resources are distinguished as substances or objects in the environment required by one organism and consumed or otherwise made unavailable for use by other organisms. Component degradation of a substance occurs by chemical or physical processes, e.g. hydrolysis. All non-living components of an ecosystem, such as atmospheric conditions and water resources, are called abiotic components.

View the full Wikipedia page for Abiotic component
↑ Return to Menu

Atmosphere in the context of Climate

Climate is the long-term weather pattern in a region, typically averaged over 30 years. More rigorously, it is the mean and variability of meteorological variables over a time spanning from months to millions of years. Some of the meteorological variables that are commonly measured are temperature, humidity, atmospheric pressure, wind, and precipitation. In a broader sense, climate is the state of the components of the climate system, including the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere and the interactions between them. The climate of a location is affected by its latitude, longitude, terrain, altitude, land use and nearby water bodies and their currents.

Climates can be classified according to the average and typical variables, most commonly temperature and precipitation. The most widely used classification scheme is the Köppen climate classification. The Thornthwaite system, in use since 1948, incorporates evapotranspiration along with temperature and precipitation information and is used in studying biological diversity and how climate change affects it. The major classifications in Thornthwaite's climate classification are microthermal, mesothermal, and megathermal. Finally, the Bergeron and Spatial Synoptic Classification systems focus on the origin of air masses that define the climate of a region.

View the full Wikipedia page for Climate
↑ Return to Menu

Atmosphere in the context of Natural resource

Natural resources are resources that are drawn from nature and used with few modifications. This includes the sources of valued characteristics such as commercial and industrial use, aesthetic value, scientific interest, and cultural value. On Earth, it includes sunlight, atmosphere, water, land, all minerals along with all vegetation, and wildlife.

Natural resources are part of humanity's natural heritage or protected in nature reserves. Particular areas (such as the rainforest in Fatu-Hiva) often feature biodiversity and geodiversity in their ecosystems. Natural resources may be classified in different ways. Natural resources are materials and components (something that can be used) found within the environment. Every man-made product is composed of natural resources (at its fundamental level).

View the full Wikipedia page for Natural resource
↑ Return to Menu

Atmosphere in the context of Laser guide star

A laser guide star is an artificial star image created for use in astronomical adaptive optics systems, which are employed in large telescopes in order to correct atmospheric distortion of light (called astronomical seeing). Adaptive optics (AO) systems require a wavefront reference source of light called a guide star. Natural stars can serve as point sources for this purpose, but sufficiently bright stars are not available in all parts of the sky, which greatly limits the usefulness of natural guide star adaptive optics. Instead, one can create an artificial guide star by shining a laser into the atmosphere. Light from the beam is reflected by components in the upper atmosphere back into the telescope. This star can be positioned anywhere the telescope desires to point, opening up much greater amounts of the sky to adaptive optics.

Because the laser beam is deflected by astronomical seeing on the way up, the returning laser light does not move around in the sky as astronomical sources do. In order to keep astronomical images steady, a natural star nearby in the sky must be monitored in order that the motion of the laser guide star can be subtracted using a tip-tilt mirror. However, this star can be much fainter than is required for natural guide star adaptive optics because it is used to measure only tip and tilt, and all higher-order distortions are measured with the laser guide star. This means that many more stars are suitable, and a correspondingly larger fraction of the sky is accessible.

View the full Wikipedia page for Laser guide star
↑ Return to Menu

Atmosphere in the context of Holocene

The Holocene (/ˈhɒl.əsn, --, ˈh.lə-, -l-/) is the current geological epoch, beginning approximately 11,700 years ago. It follows the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene is an interglacial period within the ongoing glacial cycles of the Quaternary, and is equivalent to Marine Isotope Stage 1. The name "Holocene" comes from Ancient Greek ὅλος (hólos), meaning "whole", and καινός (kainós), meaning "new, recent", referring that this epoch is "entirely new".

The Holocene correlates with the last maximum axial tilt towards the Sun of the Earth's obliquity. The Holocene corresponds with the rapid proliferation, growth, and impacts of the human species worldwide, including all of its written history, technological revolutions, development of major civilizations, and overall significant transition towards urban living in the present. The human impact on modern-era Earth and its ecosystems may be considered of global significance for the future evolution of living species, including approximately synchronous lithospheric evidence, or more recently hydrospheric and atmospheric evidence of the human impact.

View the full Wikipedia page for Holocene
↑ Return to Menu

Atmosphere in the context of Land transport

Land transport is the transport or purposeful movement of people, animals and/or goods from one location to another via land-based routes. This is in contrast with other main types of transport such as maritime transport, which moves over waterbodies; and aviation, which moves via flight through the atmosphere. The two main forms of land transport are rail transport and road transport.

View the full Wikipedia page for Land transport
↑ Return to Menu

Atmosphere in the context of Greenhouse gas

Greenhouse gases (GHGs) are the gases in an atmosphere that trap heat, raising the surface temperature of astronomical bodies such as Earth. Unlike other gases, greenhouse gases absorb the radiations that a planet emits, resulting in the greenhouse effect. The Earth is warmed by sunlight, causing its surface to radiate heat, which is then mostly absorbed by greenhouse gases. Without greenhouse gases in the atmosphere, the average temperature of Earth's surface would be about −18 °C (0 °F), rather than the present average of 15 °C (59 °F). Human-induced warming has been increasing at a rate that is unprecedented in the instrumental record, reaching 0.27 [0.2–0.4] °C per decade over 2015–2024. This high rate of warming is caused by a combination of greenhouse gas emissions being at an all-time high of 53.6±5.2 Gt CO2e yr−1 over the last decade (2014–2023), as well as reductions in the strength of aerosol cooling.

The five most abundant greenhouse gases in Earth's atmosphere, listed in decreasing order of average global mole fraction, are: water vapor, carbon dioxide, methane, nitrous oxide, ozone. Other greenhouse gases of concern include chlorofluorocarbons (CFCs and HCFCs), hydrofluorocarbons (HFCs), perfluorocarbons, SF
6
, and NF
3
. Water vapor causes about half of the greenhouse effect, acting in response to other gases as a climate change feedback.

View the full Wikipedia page for Greenhouse gas
↑ Return to Menu

Atmosphere in the context of Ocean acidification

Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 422 ppm (as of 2024). CO2 from the atmosphere is absorbed by the oceans. This chemical reaction produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO3) and a hydrogen ion (H). The presence of free hydrogen ions (H) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location. Colder and higher latitude waters are capable of absorbing more CO2. This can cause acidity to rise, lowering the pH and carbonate saturation levels in these areas. There are several other factors that influence the atmosphere-ocean CO2 exchange, and thus local ocean acidification. These include ocean currents and upwelling zones, proximity to large continental rivers, sea ice coverage, and atmospheric exchange with nitrogen and sulfur from fossil fuel burning and agriculture.

View the full Wikipedia page for Ocean acidification
↑ Return to Menu

Atmosphere in the context of Terrestrial animal

Terrestrial animals are animals that live predominantly or entirely on land (e.g., cats, chickens, ants, most spiders), as compared with aquatic animals (e.g., fish, whales, octopuses, lobsters, etc.), who live predominantly or entirely in bodies of water; and semiaquatic animals (e.g., crocodilians, seals, platypus and most amphibians), who inhabit coastal, riparian or wetland areas and rely on both aquatic and terrestrial habitats. While most insects (who constitute over half of all known species in the animal kingdom) are terrestrial, some groups, such as mosquitoes and dragonflies, spend their egg and larval stages in water but emerge as fully terrestrial adults (imagos) after completing metamorphosis.

Terrestrial animals conduct respiratory gas exchange directly with the atmosphere, typically via specialized respiratory organs known as lungs, or via cutaneous respiration across the skin. They have also evolved homeostatic features such as impermeable cuticles that can restrict fluid loss, temperature fluctuations and infection, and an excretory system that can filter out nitrogenous waste in the form of urea or uric acid, in contrast to the ammonia-based excretion of aquatic animals. Without the buoyancy of an aqueous environment to support their weight, they have evolved robust skeletons that can hold up their body shape, as well as powerful appendages known as legs or limbs to facilitate terrestrial locomotion, although some perform limbless locomotion using body surface projections such as scales and setae. Some terrestrial animals even have wings or membranes that act as airfoils to generate lift, allowing them to fly and/or glide as airborne animals.

View the full Wikipedia page for Terrestrial animal
↑ Return to Menu

Atmosphere in the context of Water cycle

The water cycle (or hydrologic cycle or hydrological cycle) is a biogeochemical cycle that involves the continuous movement of water on, above and below the surface of the Earth across different reservoirs. The mass of water on Earth remains fairly constant over time. However, the partitioning of the water into the major reservoirs of ice, fresh water, salt water and atmospheric water is variable and depends on climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere due to a variety of physical and chemical processes. The processes that drive these movements, or fluxes, are evaporation, transpiration, condensation, precipitation, sublimation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different phases: liquid, solid (ice) and vapor. The ocean plays a key role in the water cycle as it is the source of 86% of global evaporation.

The water cycle is driven by energy exchanges in the form of heat transfers between different phases. The energy released or absorbed during a phase change can result in temperature changes. Heat is absorbed as water transitions from the liquid to the vapor phase through evaporation. This heat is also known as the latent heat of vaporization. Conversely, when water condenses or melts from solid ice it releases energy and heat. On a global scale, water plays a critical role in transferring heat from the tropics to the poles via ocean circulation.

View the full Wikipedia page for Water cycle
↑ Return to Menu

Atmosphere in the context of Weather

Weather refers to the state of the Earth's atmosphere at a specific place and time, typically described in terms of temperature, humidity, cloud cover, and stability. On Earth, most weather phenomena occur in the lowest layer of the planet's atmosphere, the troposphere, just below the stratosphere. Weather refers to day-to-day temperature, precipitation, and other atmospheric conditions, whereas climate is the term for the averaging of atmospheric conditions over longer periods of time. When used without qualification, "weather" is generally understood to mean the weather of Earth.

Weather is driven by air pressure, temperature, and moisture differences between one place and another. These differences can occur due to the Sun's angle at any particular spot, which varies with latitude. The strong temperature contrast between polar and tropical air gives rise to the largest scale atmospheric circulations: the Hadley cell, the Ferrel cell, the polar cell, and the jet stream. Weather systems in the middle latitudes, such as extratropical cyclones, are caused by instabilities of the jet streamflow. Because Earth's axis is tilted relative to its orbital plane (called the ecliptic), sunlight is incident at different angles at different times of the year. On Earth's surface, temperatures usually range ±40 °C (−40 °F to 104 °F) annually. Over thousands of years, changes in Earth's orbit can affect the amount and distribution of solar energy received by Earth, thus influencing long-term climate and global climate change.

View the full Wikipedia page for Weather
↑ Return to Menu