Atmosphere (unit) in the context of "Melting point"

Play Trivia Questions online!

or

Skip to study material about Atmosphere (unit) in the context of "Melting point"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Atmosphere (unit) in the context of Melting point

The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.

When considered as the temperature of the reverse change from liquid to solid, it is referred to as the freezing point or crystallization point. Because of the ability of substances to supercool, the freezing point can easily appear to be below its actual value. When the "characteristic freezing point" of a substance is determined, in fact, the actual methodology is almost always "the principle of observing the disappearance rather than the formation of ice, that is, the melting point."

↓ Explore More Topics
In this Dossier

Atmosphere (unit) in the context of Kinetic theory of gases

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. Its introduction allowed many principal concepts of thermodynamics to be established. It treats a gas as composed of numerous particles, too small to be seen with a microscope, in constant, random motion. These particles are now known to be the atoms or molecules of the gas. The kinetic theory of gases uses their collisions with each other and with the walls of their container to explain the relationship between the macroscopic properties of gases, such as volume, pressure, and temperature, as well as transport properties such as viscosity, thermal conductivity and mass diffusivity.

The basic version of the model describes an ideal gas. It treats the collisions as perfectly elastic and as the only interaction between the particles, which are additionally assumed to be much smaller than their average distance apart.

↑ Return to Menu

Atmosphere (unit) in the context of Pressure

Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled gage pressure) is the pressure relative to the ambient pressure.

Various units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre (N/m); similarly, the pound-force per square inch (psi, symbol lbf/in) is the traditional unit of pressure in the imperial and US customary systems. Pressure may also be expressed in terms of standard atmospheric pressure; the unit atmosphere (atm) is equal to this pressure, and the torr is defined as 1760 of this. Manometric units such as the centimetre of water, millimetre of mercury, and inch of mercury are used to express pressures in terms of the height of column of a particular fluid in a manometer.

↑ Return to Menu

Atmosphere (unit) in the context of Celsius

The degree Celsius is the unit of temperature on the Celsius temperature scale (originally known as the centigrade scale outside Sweden), one of two temperature scales used in the International System of Units (SI), the other being the closely related Kelvin scale. The degree Celsius (symbol: °C) can refer to a specific point on the Celsius temperature scale or to a difference or range between two temperatures. It is named after the Swedish astronomer Anders Celsius (1701–1744), who proposed the first version of it in 1742. The unit was called centigrade in several languages (from the Latin centum, which means 100, and gradus, which means steps) for many years. In 1948, the International Committee for Weights and Measures renamed it to honor Celsius and also to remove confusion with the term for one hundredth of a gradian in some languages. Most countries use this scale, with the exception of the United States, some island territories, and Liberia, where the Fahrenheit scale is still used.

Throughout the 19th and the first half of the 20th centuries, the scale was based on 0 °C for the freezing point of water and 100 °C for the boiling point of water at 1 atm pressure. (In Celsius's initial proposal, the values were reversed: the boiling point was 0 degrees and the freezing point was 100 degrees.)

↑ Return to Menu

Atmosphere (unit) in the context of Atmosphere of the Moon

The atmosphere of the Moon is a very sparse layer of gases surrounding the Moon, consisting only of an exosphere. For most practical purposes, the Moon is considered to be surrounded by vacuum. The elevated presence of atomic and molecular particles in its vicinity compared to interplanetary medium, referred to as "lunar atmosphere" for scientific objectives, is negligible in comparison with the gaseous envelopes surrounding Earth and most planets of the Solar System, and comparable to their exospheres. The pressure of this small mass is around 3×10 atm (0.3 nPa), varying throughout the day, and has a total mass of less than 10 metric tonnes. Otherwise, the Moon is considered not to have an atmosphere because it cannot absorb measurable quantities of radiation, does not appear layered or self-circulating, and requires constant replenishment due to the high rate at which its gases are lost into space.

Roger Joseph Boscovich was the first modern astronomer to argue for the lack of atmosphere around the Moon in his De lunae atmosphaera (1753).

↑ Return to Menu

Atmosphere (unit) in the context of Armstrong limit

The Armstrong limit, also called Armstrong's line, is a measure of altitude above which atmospheric pressure is sufficiently low that water boils at the normal temperature of the human body. Exposure to pressure below this limit results in a rapid loss of consciousness, followed by a series of changes to cardiovascular and neurological functions, and eventually death, unless pressure is restored within 60–90 seconds. Therefore, airplanes usually fly below the Armstrong limit.

On Earth, the limit is around 18–19 km (11–12 mi; 59,000–62,000 ft) above sea level, above which atmospheric air pressure drops below 0.0618 atm (6.26 kPa; 47.0 mmHg; 0.908 psi). The U.S. Standard Atmosphere model sets the Armstrong limit at an altitude of 63,000 ft (19,202 m). The Armstrong limit is often used as the lower limit of near space.

↑ Return to Menu