Astronomical twilight in the context of "Noctilucent cloud"

Play Trivia Questions online!

or

Skip to study material about Astronomical twilight in the context of "Noctilucent cloud"

Ad spacer

⭐ Core Definition: Astronomical twilight

Twilight is daylight illumination produced by diffuse sky radiation when the Sun is below the horizon as sunlight from the upper atmosphere is scattered in a way that illuminates both the Earth's lower atmosphere and also the Earth's surface. Twilight also may be any period when this illumination occurs, including dawn and dusk.

The lower the Sun is beneath the horizon, the dimmer the sky (other factors such as atmospheric conditions being equal). When the Sun reaches 18° below the horizon, the illumination emanating from the sky is nearly zero, and evening twilight becomes nighttime. When the Sun approaches re-emergence, reaching 18° below the horizon, nighttime becomes morning twilight. Owing to its distinctive quality, primarily the absence of shadows and the appearance of objects silhouetted against the lit sky, twilight has long been popular with photographers and painters, who often refer to it as the blue hour, after the French expression l'heure bleue.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Astronomical twilight in the context of Noctilucent cloud

Noctilucent clouds (NLCs), or night shining clouds, are tenuous cloud-like phenomena in the upper atmosphere. When viewed from space, they are called polar mesospheric clouds (PMCs), detectable as a diffuse scattering layer of water ice crystals near the summer polar mesopause. They consist of ice crystals and from the ground are only visible during astronomical twilight. Noctilucent roughly means "night shining" in Latin. They are most often observed during the summer months from latitudes between ±50° and ±70°. Too faint to be seen in daylight, they are visible only when the observer and the lower layers of the atmosphere are in Earth's shadow while these very high clouds are still in sunlight. Recent studies suggest that increased atmospheric methane emissions produce additional water vapor through chemical reactions once the methane molecules reach the mesosphere – creating, or reinforcing existing, noctilucent clouds.

↓ Explore More Topics
In this Dossier