Artificial satellites in the context of "Satellite constellation"

Play Trivia Questions online!

or

Skip to study material about Artificial satellites in the context of "Satellite constellation"

Ad spacer

⭐ Core Definition: Artificial satellites

A satellite or an artificial satellite is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation (GPS), broadcasting, scientific research, and Earth observation. Additional military uses are reconnaissance, early warning, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.

Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope thermoelectric generators (RTGs). Most satellites also have a method of communication to ground stations, called transponders. Many satellites use a standardized bus to save cost and work, the most popular of which are small CubeSats. Similar satellites can work together as groups, forming constellations. Because of the high launch cost to space, most satellites are designed to be as lightweight and robust as possible. Most communication satellites are radio relay stations in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Artificial satellites in the context of Satellite system (astronomy)

A satellite system is a set of gravitationally bound objects in orbit around a planetary mass object (incl. sub-brown dwarfs and rogue planets) or minor planet, or its barycenter. Generally speaking, it is a set of natural satellites (moons), although such systems may also consist of bodies such as circumplanetary disks, ring systems, moonlets, minor-planet moons and artificial satellites any of which may themselves have satellite systems of their own (see Subsatellites). Some bodies also possess quasi-satellites that have orbits gravitationally influenced by their primary, but are generally not considered to be part of a satellite system. Satellite systems can have complex interactions including magnetic, tidal, atmospheric and orbital interactions such as orbital resonances and libration. Individually major satellite objects are designated in Roman numerals. Satellite systems are referred to either by the possessive adjectives of their primary (e.g. "Jovian system"), or less commonly by the name of their primary (e.g. "Jupiter system"). Where only one satellite is known, or it is a binary with a common centre of gravity, it may be referred to using the hyphenated names of the primary and major satellite (e.g. the "Earth-Moon system").

Many Solar System objects are known to possess satellite systems, though their origin is still unclear. Notable examples include the Jovian system, with 95 known moons (including the large Galilean moons) and the largest overall, the Saturnian System, with 274 known moons (including Titan and the most visible rings in the Solar System alongside). Both satellite systems are large and diverse, in fact, all of the giant planets of the Solar System possess large satellite systems as well as planetary rings, and it is inferred that this is a general pattern. Several objects farther from the Sun also have satellite systems consisting of multiple moons, including the complex Plutonian system where multiple objects orbit a common center of mass, as well as many asteroids and plutinos. Apart from the Earth-Moon system and Mars' system of two tiny natural satellites, the other terrestrial planets are generally not considered satellite systems, although some have been orbited by artificial satellites originating from Earth.

↑ Return to Menu

Artificial satellites in the context of Satellite geodesy

Satellite geodesy is geodesy by means of artificial satellites—the measurement of the form and dimensions of Earth, the location of objects on its surface and the figure of the Earth's gravity field by means of artificial satellite techniques. It belongs to the broader field of space geodesy. Traditional astronomical geodesy is not commonly considered a part of satellite geodesy, although there is considerable overlap between the techniques.

↑ Return to Menu

Artificial satellites in the context of Human presence in space

Human presence in space (also anthropogenic presence in space or humanity in space) is the direct and mediated presence or telepresence of humans in outer space, and in an extended sense across space including astronomical bodies. Human presence in space, particularly through mediation, can take many physical forms from space debris, uncrewed spacecraft, artificial satellites, space observatories, crewed spacecraft, art in space, to human outposts in outer space such as space stations.

While human presence in space, particularly its continuation and permanence can be a goal in itself, human presence can have a range of purposes and modes from space exploration, commercial use of space to extraterrestrial settlement or even space colonization and militarisation of space. Human presence in space is realized and sustained through the advancement and application of space sciences, particularly astronautics in the form of spaceflight and space infrastructure.

↑ Return to Menu

Artificial satellites in the context of Space geodesy

Space geodesy is geodesy by means of sources external to Earth, mainly artificial satellites (in satellite geodesy) but also quasars (in very-long-baseline interferometry, VLBI), visible stars (in stellar triangulation), and the retroreflectors on the Moon (in lunar laser ranging, LLR).

↑ Return to Menu

Artificial satellites in the context of Satellite internet constellation

A satellite internet constellation is a constellation of artificial satellites providing satellite internet service. In particular, the term has come to refer to a new generation of very large constellations (sometimes referred to as megaconstellations) orbiting in low Earth orbit (LEO) to provide low-latency, high bandwidth (broadband) internet service. As of 2020, 63 percent of rural households worldwide lacked internet access due to the infrastructure requirements of underground cables and network towers. Satellite internet constellations offer a low-cost solution for expanding coverage.

↑ Return to Menu