Aqueous solution in the context of Monochloramine


Aqueous solution in the context of Monochloramine

Aqueous solution Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Aqueous solution in the context of "Monochloramine"


⭐ Core Definition: Aqueous solution

An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, also known as sodium chloride (NaCl), in water would be represented as Na(aq) + Cl(aq). The word aqueous (which comes from aqua) means pertaining to, related to, similar to, or dissolved in, water. As water is an excellent solvent and is also naturally abundant, it is a ubiquitous solvent in chemistry. Since water is frequently used as the solvent in experiments, the word solution refers to an aqueous solution, unless the solvent is specified.

A non-aqueous solution is a solution in which the solvent is a liquid, but is not water.

↓ Menu
HINT:

In this Dossier

Aqueous solution in the context of Hygroscopic

Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, boiling point, viscosity or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.

Deliquescent materials are sufficiently hygroscopic that they dissolve in the water they absorb, forming an aqueous solution.

View the full Wikipedia page for Hygroscopic
↑ Return to Menu

Aqueous solution in the context of Precipitation (chemistry)

In an aqueous solution, precipitation is the "sedimentation of a solid material (a precipitate) from a liquid solution". The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

The clear liquid remaining above the precipitated or the centrifuged solid phase is also called the supernate or supernatant.

View the full Wikipedia page for Precipitation (chemistry)
↑ Return to Menu

Aqueous solution in the context of Evaporite

An evaporite (/ɪˈvæpəˌrt/) is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocean deposits, and non-marine, which are found in standing bodies of water such as lakes. Evaporites are considered sedimentary rocks and are formed by chemical sediments.

View the full Wikipedia page for Evaporite
↑ Return to Menu

Aqueous solution in the context of Sedimentary rock

Sedimentary rocks are types of rock formed by the cementation of sediments—i.e. particles made of minerals (geological detritus) or organic matter (biological detritus)—that have been accumulated or deposited at Earth's surface. Sedimentation is any process that causes these particles to settle in place. Geological detritus originates from weathering and erosion of existing rocks, or from the solidification of molten lava blobs erupted by volcanoes. The geological detritus is transported to the place of deposition by water, wind, ice or mass movement, which are called agents of denudation. Biological detritus is formed by bodies and parts (mainly shells) of dead aquatic organisms, as well as their fecal mass, suspended in water and slowly piling up on the floor of water bodies (marine snow). Sedimentation may also occur when dissolved minerals precipitate from water solution.

The sedimentary rock cover of the continents of the Earth's crust is extensive (73% of the Earth's current land surface), but sedimentary rock is estimated to be only 8% of the volume of the crust. Sedimentary rocks are only a thin veneer over a crust consisting mainly of igneous and metamorphic rocks. Sedimentary rocks are deposited in layers as strata, forming a structure called bedding. Sedimentary rocks are often deposited in large structures called sedimentary basins. Sedimentary rocks have also been found on Mars.

View the full Wikipedia page for Sedimentary rock
↑ Return to Menu

Aqueous solution in the context of Dye

A dye is a colored substance that chemically bonds to the material to which it is being applied. This distinguishes dyes from pigments which do not chemically bind to the material they color. Dye is generally applied in an aqueous solution and may require a mordant to improve the fastness of the dye on the fiber.

The majority of natural dyes are derived from non-animal sources such as roots, berries, bark, leaves, wood, fungi and lichens. However, due to large-scale demand and technological improvements, most dyes used in the modern world are synthetically produced from substances such as petrochemicals. Some are extracted from insects and/or minerals.

View the full Wikipedia page for Dye
↑ Return to Menu

Aqueous solution in the context of Micelle

A micelle (/mˈsɛl/) or micella (/mˈsɛlə/) (pl.micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated colloidal system). A typical micelle in water forms an aggregate, with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.

This phase is caused by the packing behavior of single-tail lipids in a bilayer. The difficulty in filling the volume of the interior of a bilayer, while accommodating the area per head group forced on the molecule by the hydration of the lipid head group, leads to the formation of the micelle. This type of micelle is known as a normal-phase micelle (or oil-in-water micelle). Inverse micelles have the head groups at the centre with the tails extending out (or water-in-oil micelle).

View the full Wikipedia page for Micelle
↑ Return to Menu

Aqueous solution in the context of Vein (geology)

In geology, a vein is a distinct sheetlike body of crystallized minerals within a rock. Veins form when mineral constituents carried by an aqueous solution within the rock mass are deposited through precipitation. The hydraulic flow involved is usually due to hydrothermal circulation.

Veins are classically thought of as being planar fractures in rocks, with the crystal growth occurring normal to the walls of the cavity, and the crystal protruding into open space. This certainly is the method for the formation of some veins. However, it is rare in geology for significant open space to remain open in large volumes of rock, especially several kilometers below the surface. Thus, there are two main mechanisms considered likely for the formation of veins: open-space filling and crack-seal growth.

View the full Wikipedia page for Vein (geology)
↑ Return to Menu

Aqueous solution in the context of Corrosion-resistant

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

In the most common use of the word, this means electrochemical oxidation of a metal reacting with an oxidant such as oxygen (O2, gaseous or dissolved), or H3O ions (H, hydrated protons) present in aqueous solution. Rusting, the formation of red-orange iron oxides, is perhaps the most familiar example of electrochemical corrosion. This type of corrosion typically produces oxides or salts of the original metal and results in a distinctive coloration. Corrosion can also occur in materials other than metals, such as ceramics or polymers, although, in this context, the term degradation is more common. Corrosion degrades the useful properties of materials and structures including mechanical strength, appearance, and permeability to liquids and gases. Corrosive is distinguished from caustic: the former implies mechanical degradation, the latter chemical.

View the full Wikipedia page for Corrosion-resistant
↑ Return to Menu

Aqueous solution in the context of Solution (chemistry)

In chemistry, a solution is defined by IUPAC as "A liquid or solid phase containing more than one substance, when for convenience one (or more) substance, which is called the solvent, is treated differently from the other substances, which are called solutes. When, as is often but not necessarily the case, the sum of the mole fractions of solutes is small compared with unity, the solution is called a dilute solution. A superscript attached to the ∞ symbol for a property of a solution denotes the property in the limit of infinite dilution." One parameter of a solution is the concentration, which is a measure of the amount of solute in a given amount of solution or solvent. The term "aqueous solution" is used when one of the solvents is water.

View the full Wikipedia page for Solution (chemistry)
↑ Return to Menu

Aqueous solution in the context of PH

In chemistry, pH (/pˈh/ or /pˈ/; pee-HAYCH or pee-AYCH) is a logarithmic scale used to specify the acidity or basicity of aqueous solutions. Acidic solutions (solutions with higher concentrations of hydrogen (H) cations) are measured to have lower pH values than basic or alkaline solutions. While the origin of the symbol 'pH' can be traced back to its original inventor, and the 'H' refers clearly to hydrogen, the exact original meaning of the letter 'p' in pH is still disputed; it has since acquired a more general technical meaning that is used in numerous other contexts.

The pH scale is logarithmic and inversely indicates the activity of hydrogen cations in the solution

View the full Wikipedia page for PH
↑ Return to Menu

Aqueous solution in the context of Blood sugar level

The blood sugar level, blood sugar concentration, blood glucose level, or glycemia is the measure of glucose concentrated in the blood. The body tightly regulates blood glucose levels as a part of metabolic homeostasis.

For a 70 kg (154 lb) human, approximately four grams of dissolved glucose (also called "blood glucose") is maintained in the blood plasma at all times. Glucose that is not circulating in the blood is stored in skeletal muscle and liver cells in the form of glycogen; in fasting individuals, blood glucose is maintained at a constant level by releasing just enough glucose from these glycogen stores in the liver and skeletal muscle in order to maintain homeostasis. Glucose can be transported from the intestines or liver to other tissues in the body via the bloodstream. Cellular glucose uptake is primarily regulated by insulin, a hormone produced in the pancreas. Once inside the cell, the glucose can now act as an energy source as it undergoes the process of glycolysis.

View the full Wikipedia page for Blood sugar level
↑ Return to Menu

Aqueous solution in the context of Acid

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen cation, H), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

The first category of acids are the proton donors, or Brønsted–Lowry acids. In the special case of aqueous solutions, proton donors form the hydronium ion H3O and are known as Arrhenius acids. Brønsted and Lowry generalized the Arrhenius theory to include non-aqueous solvents. A Brønsted–Lowry or Arrhenius acid usually contains a hydrogen atom bonded to a chemical structure that is still energetically favorable after loss of H.

View the full Wikipedia page for Acid
↑ Return to Menu

Aqueous solution in the context of Vinegar

Vinegar (from Old French vyn egre 'sour wine') is an odorous aqueous solution of diluted acetic acid and trace compounds that may include flavorings or naturally occurring organic compounds. Vinegar typically contains from 4% to 18% acetic acid by volume.

Usually, the acetic acid is produced by a double fermentation—converting simple sugars to ethanol using yeast, and then converting ethanol to acetic acid using acetic acid bacteria. Many types of vinegar are made, depending on source materials.

View the full Wikipedia page for Vinegar
↑ Return to Menu

Aqueous solution in the context of Acetate

An acetate is a salt formed by the combination of acetic acid with a base (e.g. alkaline, earthy, metallic, nonmetallic, or radical base). "Acetate" also describes the conjugate base or ion (specifically, the negatively charged ion called an anion) typically found in aqueous solution and written with the chemical formula C
2
H
3
O
2
. The neutral molecules formed by the combination of the acetate ion and a positive ion (called a cation) are also commonly called "acetates" (hence, acetate of lead, acetate of aluminium, etc.). The simplest of these is hydrogen acetate (called acetic acid) with corresponding salts, esters, and the polyatomic anion CH
3
CO
2
, or CH
3
COO
.

Most of the approximately 5 million tonnes of acetic acid produced annually in industry are used in the production of acetates, which usually take the form of polymers. In nature, acetate is the most common building block for biosynthesis.

View the full Wikipedia page for Acetate
↑ Return to Menu

Aqueous solution in the context of Effervescence

Effervescence is the escape of gas from an aqueous solution and the foaming or fizzing that results from that release. The word effervescence is derived from the Latin verb fervere (to boil), preceded by the adverb ex. It has the same linguistic root as the word fermentation .

Effervescence can also be observed when opening a bottle of champagne, beer or carbonated soft drink. The visible bubbles are produced by the escape from solution of the dissolved gas (which itself is not visible while dissolved in the liquid).

View the full Wikipedia page for Effervescence
↑ Return to Menu