Apparent retrograde motion in the context of "Copernican Revolution"

Play Trivia Questions online!

or

Skip to study material about Apparent retrograde motion in the context of "Copernican Revolution"

Ad spacer

⭐ Core Definition: Apparent retrograde motion

Apparent retrograde motion is the apparent motion of a planet in a direction opposite to that of other bodies within its system, as observed from a particular vantage point. Direct motion or prograde motion is motion in the same direction as other bodies.

While the terms direct and prograde are equivalent in this context, the former is the traditional term in astronomy. The earliest recorded use of prograde was in the early 18th century, although the term is now less common.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Apparent retrograde motion in the context of Copernican Revolution

In the 16th century, Nicolaus Copernicus proposed a major shift in the understanding of the cycle of the heavenly spheres. Driven by a desire for a more perfect (i.e. circular) description of the cosmos than the prevailing Ptolemaic model - which posited that the Sun circled a stationary Earth - Copernicus instead advanced a heliostatic system where a stationary Sun was located near, though not precisely at, the mathematical center of the heavens. In the 20th century, the science historian Thomas Kuhn characterized the "Copernican Revolution" as the first historical example of a paradigm shift in human knowledge. Both Arthur Koestler and David Wootton, on the other hand, have disagreed with Kuhn about how revolutionary Copernicus' work should be considered.

↓ Explore More Topics
In this Dossier

Apparent retrograde motion in the context of Epicycle

In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (from Ancient Greek ἐπίκυκλος (epíkuklos) 'upon the circle', meaning "circle moving on another circle") was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.

It was first proposed by Apollonius of Perga at the end of the 3rd century BC. It was developed by Apollonius of Perga and Hipparchus of Rhodes, who used it extensively, during the 2nd century BC, then formalized and extensively used by Ptolemy in his 2nd century AD astronomical treatise the Almagest.

↑ Return to Menu

Apparent retrograde motion in the context of Ephemeris

In astronomy and celestial navigation, an ephemeris (/ɪˈfɛmərɪs/; pl.ephemerides /ˌɛfəˈmɛrɪˌdz/; from Latin ephemeris 'diary', from Ancient Greek ἐφημερίς (ephēmerís) 'diary, journal') is a book with tables that gives the trajectory of naturally occurring astronomical objects and artificial satellites in the sky, i.e., the position (and possibly velocity) over time. Historically, positions were given as printed tables of values, given at regular intervals of date and time. The calculation of these tables was one of the first applications of mechanical computers. Modern ephemerides are often provided in electronic form. However, printed ephemerides are still produced, as they are useful when computational devices are not available.

The astronomical position calculated from an ephemeris is often given in the spherical polar coordinate system of right ascension and declination, together with the distance from the origin if applicable. Some of the astronomical phenomena of interest to astronomers are eclipses, apparent retrograde motion/planetary stations, planetary ingresses, sidereal time, positions for the mean and true nodes of the moon, the phases of the Moon, and the positions of minor celestial bodies such as Chiron.

↑ Return to Menu

Apparent retrograde motion in the context of Copernican Revolution (metaphor)

In the 16th century, Nicolaus Copernicus proposed a major shift in the understanding of the cycle of the heavenly spheres. Driven by a desire for a more perfect (i.e. circular) description of the cosmos than the prevailing Ptolemaic model - which posited that the Sun circled a stationary Earth - Copernicus instead advanced a heliostatic system where a stationary Sun was located near, though not precisely at, the mathematical center of the heavens. In the 20th century, the science historian Thomas Kuhn characterized the "Copernican Revolution" as the first historical example of a paradigm shift in human knowledge,. Both Arthur Koestler and David Wootton, on the other hand, have disagreed with Kuhn about how revolutionary Copernicus' work should be considered.

↑ Return to Menu