Apatite in the context of Mugearite


Apatite in the context of Mugearite

Apatite Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Apatite in the context of "Mugearite"


⭐ Core Definition: Apatite

Apatite is a group of phosphate minerals, usually hydroxyapatite, fluorapatite and chlorapatite, with high concentrations of OH, F and Cl ion, respectively, in the crystal. The formula of the admixture of the three most common endmembers is written as Ca10(PO4)6(OH,F,Cl)2, and the crystal unit cell formulae of the individual minerals are written as Ca10(PO4)6(OH)2, Ca10(PO4)6F2 and Ca10(PO4)6Cl2.

The mineral was named apatite by the German geologist Abraham Gottlob Werner in 1786, although the specific mineral he had described was reclassified as fluorapatite in 1860 by the German mineralogist Karl Friedrich August Rammelsberg. Apatite is often mistaken for other minerals. This tendency is reflected in the mineral's name, which is derived from the Greek word ἀπατάω (apatáō), which means to deceive.

↓ Menu
HINT:

👉 Apatite in the context of Mugearite

Mugearite (/ˈmʌɡiərt/) is a type of oligoclase-bearing basalt, comprising olivine, apatite, and opaque oxides. The main feldspar in mugearite is oligoclase.

Mugearite is a sodium-rich member of the alkaline magma series. In the TAS classification of volcanic rock, mugearite is classified as sodium-rich basaltic trachyandesite.

↓ Explore More Topics
In this Dossier

Apatite in the context of Calcium

Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossils of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name comes from Latin calx "lime", which was obtained from heating limestone.

Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by Humphry Davy, who named the element. Calcium compounds are widely used in many industries: in foods and pharmaceuticals for calcium supplementation, in the paper industry as bleaches, as components in cement and electrical insulators, and in the manufacture of soaps. On the other hand, the metal in pure form has few applications due to its high reactivity; still, in small quantities it is often used as an alloying component in steelmaking, and sometimes, as a calcium–lead alloy, in making automotive batteries.

View the full Wikipedia page for Calcium
↑ Return to Menu

Apatite in the context of Phosphate mineral

Phosphate minerals are minerals that contain the tetrahedrally coordinated phosphate (PO3−4) anion, sometimes with arsenate (AsO3−4) and vanadate (VO3−4) substitutions, along with chloride (Cl), fluoride (F), and hydroxide (OH) anions, that also fit into the crystal structure.

The phosphate class of minerals is a large and diverse group, however, only a few species are relatively common.

View the full Wikipedia page for Phosphate mineral
↑ Return to Menu

Apatite in the context of Inclusion (mineral)

An inclusion in mineralogy is any material trapped inside a mineral during its formation. In gemology, it is an object enclosed within a gemstone or reaching its surface from the interior. According to James Hutton's law of inclusions, fragments included in a host rock are older than the host rock itself. The term is also used in metallurgy.

View the full Wikipedia page for Inclusion (mineral)
↑ Return to Menu

Apatite in the context of Hydroxylapatite

Hydroxyapatite (IMA name: hydroxylapatite) (Hap, HAp, or HA) is a naturally occurring mineral form of apatite with the formula Ca5(PO4)3(OH), often written Ca10(PO4)6(OH)2 to denote that the crystal unit cell comprises two entities. It is the hydroxyl endmember of the complex apatite group. The OH ion can be replaced by fluoride or chloride, producing fluorapatite or chlorapatite. It crystallizes in the hexagonal crystal system. Pure hydroxyapatite powder is white. Naturally occurring apatites can, however, also have brown, yellow, or green colorations, comparable to the discolorations of dental fluorosis.

Up to 50% by volume and 70% by weight of human bone is a modified form of hydroxyapatite, known as bone mineral. Carbonated calcium-deficient hydroxyapatite is the main mineral of which dental enamel and dentin are composed. Hydroxyapatite crystals are also found in pathological calcifications such as those found in breast tumors, as well as calcifications within the pineal gland (and other structures of the brain) known as corpora arenacea or "brain sand".

View the full Wikipedia page for Hydroxylapatite
↑ Return to Menu

Apatite in the context of Leucocratic

Color index, as a geological term, is a measure of the ratio between generally dark mafic minerals and generally light felsic minerals in an igneous rock. The color index of an igneous rock is the volume percentage of mafic minerals in the rock, excluding minerals generally regarded as "colorless" such as apatite, muscovite, primary carbonates and similar minerals. Rocks can be sorted into classes by several systems based on their color index, including into leucocratic and melanocratic rocks, or into (mineralogically) felsic and mafic rocks.

With an accuracy within 1%, color index can be determined by applying a microscope to a flat, planar section of rock and employing a point counting technique to determine the amount of light or dark rock. In the field, it can be generally estimated visually from hand specimens.

View the full Wikipedia page for Leucocratic
↑ Return to Menu

Apatite in the context of Phosphorus cycle

The phosphorus cycle is the biogeochemical cycle that involves the movement of phosphorus through the lithosphere, hydrosphere, and biosphere. Unlike many other biogeochemical cycles, the atmosphere does not play a significant role in the movement of phosphorus, because phosphorus and phosphorus-based materials do not enter the gaseous phase readily, as the main source of gaseous phosphorus, phosphine, is only produced in isolated and specific conditions. Therefore, the phosphorus cycle is primarily examined studying the movement of orthophosphate (PO3−4), the form of phosphorus that is most commonly seen in the environment, through terrestrial and aquatic ecosystems.

Living organisms require phosphorus, a vital component of DNA, RNA, ATP, etc., for their proper functioning. Phosphorus also enters in the composition of phospholipids present in cell membranes. Plants assimilate phosphorus as phosphate and incorporate it into organic compounds. In animals, inorganic phosphorus in the form of apatite (Ca5(PO4)3(OH,F)) is also a key component of bones, teeth (tooth enamel), etc. On the land, phosphorus gradually becomes less available to plants over thousands of years, since it is slowly lost in runoff. Low concentration of phosphorus in soils reduces plant growth and slows soil microbial growth, as shown in studies of soil microbial biomass. Soil microorganisms act as both sinks and sources of available phosphorus in the biogeochemical cycle. Short-term transformation of phosphorus is chemical, biological, or microbiological. In the long-term global cycle, however, the major transfer is driven by tectonic movement over geologic time and weathering of phosphate containing rock such as apatite. Furthermore, phosphorus tends to be a limiting nutrient in aquatic ecosystems. However, as phosphorus enters aquatic ecosystems, it has the possibility to lead to over-production in the form of eutrophication, which can happen in both freshwater and saltwater environments.

View the full Wikipedia page for Phosphorus cycle
↑ Return to Menu

Apatite in the context of Implant (medicine)

An implant is a medical device manufactured to replace a missing biological structure, support a damaged biological structure, or enhance an existing biological structure. For example, an implant may be a rod, used to strengthen weak bones. Medical implants are human-made devices, in contrast to a transplant, which is a transplanted biomedical tissue. The surface of implants that contact the body might be made of a biomedical material such as titanium, silicone, or apatite depending on what is the most functional. In 2018, for example, American Elements developed a nickel alloy powder for 3D printing robust, long-lasting, and biocompatible medical implants. In some cases implants contain electronics, e.g. artificial pacemaker and cochlear implants. Some implants are bioactive, such as subcutaneous drug delivery devices in the form of implantable pills or drug-eluting stents.

View the full Wikipedia page for Implant (medicine)
↑ Return to Menu

Apatite in the context of Plant nutrients in soil

Seventeen elements or nutrients are essential for plant growth and reproduction. They are carbon (C), hydrogen (H), oxygen (O), nitrogen (N), phosphorus (P), potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), iron (Fe), boron (B), manganese (Mn), copper (Cu), zinc (Zn), molybdenum (Mo), nickel (Ni) and chlorine (Cl). Nutrients required for plants to complete their life cycle are considered essential nutrients. Nutrients that enhance the growth of plants but are not necessary to complete the plant's life cycle are considered non-essential, although some of them, such as silicon (Si), have been shown to improve nutrient availability, hence the use of stinging nettle and horsetail (both silica-rich) macerations in biodynamic agriculture. With the exception of carbon, hydrogen and oxygen, which are supplied by carbon dioxide and water, and nitrogen, provided through nitrogen fixation, the nutrients derive originally from the mineral component of the soil. The law of the minimum expresses that when the available form of a nutrient is not in enough proportion in the soil solution, then other nutrients cannot be taken up at an optimum rate by a plant. A particular nutrient ratio of the soil solution is thus mandatory for optimizing plant growth, a value which might differ from nutrient ratios calculated from plant composition.

Plant uptake of nutrients can only proceed when they are present in a plant-available form. In most situations, nutrients are absorbed in an ionic form by diffusion or absorption of the soil water. Although minerals are the origin of most nutrients, and the bulk of most nutrient elements in the soil is held in crystalline form within primary and secondary minerals, they weather too slowly to support rapid plant growth. For example, the application of finely ground minerals, feldspar and apatite, to soil seldom provides the necessary amounts of potassium and phosphorus at a rate sufficient for good plant growth, as most of the nutrients remain bound in the crystals of those minerals.

View the full Wikipedia page for Plant nutrients in soil
↑ Return to Menu

Apatite in the context of Vanadinite

Vanadinite is a mineral belonging to the apatite group of phosphates, with the chemical formula Pb5(VO4)3Cl. It is one of the main industrial ores of the metal vanadium and a minor source of lead. A dense, brittle mineral, it is usually found in the form of red hexagonal crystals. It is an uncommon mineral, formed by the oxidation of lead ore deposits such as galena. First discovered in 1801 in Mexico, vanadinite deposits have since been unearthed in South America, Europe, Africa, and North America.

View the full Wikipedia page for Vanadinite
↑ Return to Menu

Apatite in the context of Nodule (geology)

In geology and particularly in sedimentology, a nodule is a small, irregularly rounded knot, mass, or lump of a mineral or mineral aggregate that typically has a contrasting composition from the enclosing sediment or sedimentary rock. Examples include pyrite nodules in coal, a chert nodule in limestone, or a phosphorite nodule in marine shale. Normally, a nodule has a warty or knobby surface and exists as a discrete mass within the host strata. In general, they lack any internal structure except for the preserved remnants of original bedding or fossils. Nodules are closely related to concretions and sometimes these terms are used interchangeably. Minerals that typically form nodules include calcite, chert, apatite (phosphorite), anhydrite, and pyrite.

Nodular is used to describe a sediment or sedimentary rock composed of scattered to loosely packed nodules in a matrix of like or unlike character. It is also used to describe mineral aggregates that occur in the form of nodules, e.g. colloform mineral aggregate with a bulbed surface.

View the full Wikipedia page for Nodule (geology)
↑ Return to Menu

Apatite in the context of Skaergaard intrusion

68°10′06″N 31°43′01″W / 68.1683°N 31.7169°W / 68.1683; -31.7169

The Skaergaard intrusion is a layered igneous intrusion in the Kangerlussuaq area of East Greenland and is composed of various rocks and minerals including gabbro, olivine, apatite, and basalt.

View the full Wikipedia page for Skaergaard intrusion
↑ Return to Menu

Apatite in the context of Tonalite

Tonalite is an igneous, plutonic (intrusive) rock, of felsic composition, with phaneritic (coarse-grained) texture. Feldspar is present as plagioclase (typically oligoclase or andesine) with alkali feldspar making up less than 10% of the total feldspar content. Quartz (SiO2) is present as more than 20% of the total quartz-alkali feldspar-plagioclase-feldspathoid (QAPF) content of the rock. Amphiboles and biotite are common in lesser quantities, while accessory minerals include apatite, magnetite and zircon.

In older references tonalite is sometimes used as a synonym for quartz diorite. However the current IUGS classification defines tonalite as having greater than 20% quartz, while quartz diorite varies its quartz content from 5 to 20%.

View the full Wikipedia page for Tonalite
↑ Return to Menu