Antiparticle in the context of Hexaquark


Antiparticle in the context of Hexaquark

Antiparticle Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Antiparticle in the context of "Hexaquark"


⭐ Core Definition: Antiparticle

In particle physics, every type of particle of "ordinary" matter (as opposed to antimatter) is associated with an antiparticle with the same mass but with opposite physical charges (such as electric charge). For example, the antiparticle of the electron is the positron (also known as an antielectron). While the electron has a negative electric charge, the positron has a positive electric charge, and is produced naturally in certain types of radioactive decay. The opposite is also true: the antiparticle of the positron is the electron.

Some particles, such as the photon, are their own antiparticle. Otherwise, for each pair of antiparticle partners, one is designated as the normal particle (the one that occurs in matter usually interacted with in daily life). The other (usually given the prefix "anti-") is designated the antiparticle.

↓ Menu
HINT:

In this Dossier

Antiparticle in the context of Up quark

The up quark or u quark (symbol: u) is the lightest of all quarks, a type of elementary particle, and a significant constituent of matter. It, along with the down quark, forms the neutrons (one up quark, two down quarks) and protons (two up quarks, one down quark) of atomic nuclei. It is part of the first generation of matter, has an electric charge of +2/3 e and a bare mass of 2.2+0.5
−0.4
 MeV/c
. Like all quarks, the up quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the up quark is the up antiquark (sometimes called antiup quark or simply antiup), which differs from it only in that some of its properties, such as charge have equal magnitude but opposite sign.

Its existence (along with that of the down and strange quarks) was postulated in 1964 by Murray Gell-Mann and George Zweig to explain the Eightfold Way classification scheme of hadrons. The up quark was first observed by experiments at the Stanford Linear Accelerator Center in 1968.

View the full Wikipedia page for Up quark
↑ Return to Menu

Antiparticle in the context of Down quark

The down quark (symbol: d) is a type of elementary particle, and a major constituent of matter. The down quark is the second-lightest of all quarks, and combines with other quarks to form composite particles called hadrons. Down quarks are most commonly found in atomic nuclei, where it combines with up quarks to form protons and neutrons. The proton is made of one down quark with two up quarks, and the neutron is made up of two down quarks with one up quark. Because they are found in every single known atom, down quarks are present in all everyday matter that we interact with.

The down quark is part of the first generation of matter, has an electric charge of −1/3 e and a bare mass of 4.7+0.5
−0.3
 MeV/c
. Like all quarks, the down quark is an elementary fermion with spin 1/2, and experiences all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. The antiparticle of the down quark is the down antiquark (sometimes called antidown quark or simply antidown), which differs from it only in that some of its properties have equal magnitude but opposite sign.

View the full Wikipedia page for Down quark
↑ Return to Menu

Antiparticle in the context of Baryon

In particle physics, a baryon is a type of composite subatomic particle that contains an odd number of valence quarks, conventionally three. Protons and neutrons are examples of baryons; because baryons are composed of quarks, they belong to the hadron family of particles. Baryons are also classified as fermions because they have half-integer spin.

The name "baryon", introduced by Abraham Pais, comes from the Greek word for "heavy" (βαρύς, barýs), because, at the time of their naming, most known elementary particles had lower masses than the baryons. Each baryon has a corresponding antiparticle (antibaryon) where their corresponding antiquarks replace quarks. For example, a proton is made of two up quarks and one down quark; and its corresponding antiparticle, the antiproton, is made of two up antiquarks and one down antiquark.

View the full Wikipedia page for Baryon
↑ Return to Menu

Antiparticle in the context of Positron

The positron or antielectron is the particle with an electric charge of +1e, a spin of 1/2 (the same as the electron), and approximately the same mass as an electron. It is the antiparticle (antimatter counterpart) of the electron. When a positron collides with an electron, annihilation occurs. If this collision occurs at low energies, it results in the production of two or more photons.

Positrons can be created by positron emission radioactive decay (through weak interactions), or by pair production from a sufficiently energetic photon which is interacting with an atom in a material.

View the full Wikipedia page for Positron
↑ Return to Menu

Antiparticle in the context of Antimatter

In modern physics, antimatter is defined as matter composed of the antiparticles (or "partners") of the corresponding particles in "ordinary" matter, and can be thought of as matter with reversed charge and parity, or going backward in time (see CPT symmetry). Antimatter occurs in natural processes like cosmic ray collisions and some types of radioactive decay, but only a tiny fraction of these have successfully been bound together in experiments to form antiatoms. Minuscule numbers of antiparticles can be generated at particle accelerators, but total artificial production has been only a few nanograms. No macroscopic amount of antimatter has ever been assembled due to the extreme cost and difficulty of production and handling. Nonetheless, antimatter is an essential component of widely available applications related to beta decay, such as positron emission tomography, radiation therapy, and industrial imaging.

In theory, a particle and its antiparticle (for example, a proton and an antiproton) have the same mass, but opposite electric charge, and other differences in quantum numbers.

View the full Wikipedia page for Antimatter
↑ Return to Menu

Antiparticle in the context of Tau (particle)

The tau (τ), also called the tau lepton, tau particle or tauon, is an elementary particle similar to the electron, with negative electric charge and a spin of 1/2. Like the electron, the muon, and the three neutrinos, the tau is a lepton, and like all elementary particles with half-integer spin, the tau has a corresponding antiparticle of opposite charge but equal mass and spin. In the tau's case, this is the "antitau" (also called the positive tau). Tau particles are denoted by the symbol τ and the antitaus by τ.

Tau leptons have a lifetime of 2.9×10 s and a mass of 1776.9 MeV/c (compared to 105.66 MeV/c for muons and 0.511 MeV/c for electrons). Because their interactions are very similar to those of the electron, a tau can be thought of as a much heavier version of the electron. Due to their greater mass, tau particles do not emit as much bremsstrahlung (braking radiation) as electrons; consequently they are potentially much more highly penetrating than electrons.

View the full Wikipedia page for Tau (particle)
↑ Return to Menu

Antiparticle in the context of W and Z bosons

In particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are W
, W
, and Z
. The W
 bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The Z
 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1. The W
 bosons have a magnetic moment, but the Z
has none. All three of these particles are very short-lived, with a half-life of about 3×10 s. Their experimental discovery was pivotal in establishing what is now called the Standard Model of particle physics.

The W bosons are named after the weak force. The physicist Steven Weinberg named the additional particle the "Z particle", and later gave the explanation that it was the last additional particle needed by the model. The W bosons had already been named, and the Z bosons were named for having zero electric charge.

View the full Wikipedia page for W and Z bosons
↑ Return to Menu

Antiparticle in the context of Top quark

The top quark, sometimes also referred to as the truth quark, (symbol: t) is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs field. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and experiments at Fermilab.

Like all other quarks, the top quark is a fermion with spin-1/2 and participates in all four fundamental interactions: gravitation, electromagnetism, weak interactions, and strong interactions. It has an electric charge of + 2 /3 e. It has a mass of 172.76±0.3 GeV/c, which is close to the rhenium atom mass (more precisely, the average of its isotopes). The antiparticle of the top quark is the top antiquark (symbol: t, sometimes called antitop quark or simply antitop), which differs from it only in that some of its properties have equal magnitude but opposite sign.

View the full Wikipedia page for Top quark
↑ Return to Menu

Antiparticle in the context of Hadron

In particle physics, a hadron is a composite subatomic particle made of two or more quarks held together by the strong nuclear force. Pronounced /ˈhædrɒn/ , the name is derived from Ancient Greek ἁδρός (hadrós) 'stout, thick'. They are analogous to molecules, which are held together by the electric force. Most of the mass of ordinary matter comes from two hadrons: the proton and the neutron, while most of the mass of the protons and neutrons is in turn due to the binding energy of their constituent quarks, due to the strong force.

Hadrons are categorized into two broad families: baryons, made of an odd number of quarks (usually three), and mesons, made of an even number of quarks (usually two: one quark and one antiquark). Protons and neutrons (which make the majority of the mass of an atom) are examples of baryons; pions are an example of a meson. A tetraquark state (an exotic meson), named the Z(4430), was discovered in 2007 by the Belle Collaboration and confirmed as a resonance in 2014 by the LHCb collaboration. Two pentaquark states (exotic baryons), named P
c
(4380)
and P
c
(4450)
, were discovered in 2015 by the LHCb collaboration. There are several other "Exotic" hadron candidates and other colour-singlet quark combinations that may also exist.

View the full Wikipedia page for Hadron
↑ Return to Menu

Antiparticle in the context of Antiproton

The antiproton, p, (pronounced p-bar) is the antiparticle of the proton. Antiprotons are stable, but they are typically short-lived, since any collision with a proton will cause both particles to be annihilated in a burst of energy.

The existence of the antiproton with electric charge of −1 e, opposite to the electric charge of +1 e of the proton, was predicted by Paul Dirac in his 1933 Nobel Prize lecture. Dirac received the Nobel Prize for his 1928 publication of his Dirac equation that predicted the existence of positive and negative solutions to Einstein's energy equation () and the existence of the positron, the antimatter analog of the electron, with opposite charge and spin.

View the full Wikipedia page for Antiproton
↑ Return to Menu

Antiparticle in the context of Electron hole

In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice. Since in a normal atom or crystal lattice the negative charge of the electrons is balanced by the positive charge of the atomic nuclei, the absence of an electron leaves a net positive charge at the hole's location.

Holes in a metal or semiconductor crystal lattice can move through the lattice as electrons can, and act similarly to positively-charged particles. They play an important role in the operation of semiconductor devices such as transistors, diodes (including light-emitting diodes) and integrated circuits. If an electron is excited into a higher state it leaves a hole in its old state. This meaning is used in Auger electron spectroscopy (and other x-ray techniques), in computational chemistry, and to explain the low electron-electron scattering-rate in crystals (metals and semiconductors). Although they act like elementary particles, holes are rather quasiparticles; they are different from the positron, which is the antiparticle of the electron. (See also Dirac sea.)

View the full Wikipedia page for Electron hole
↑ Return to Menu

Antiparticle in the context of Lepton number

In particle physics, lepton number (historically also called lepton charge)is a conserved quantum number representing the difference between the number of leptons and the number of antileptons in an elementary particle reaction.Lepton number is an additive quantum number, so its sum is preserved in interactions (as opposed to multiplicative quantum numbers such as parity, where the product is preserved instead). The lepton number is defined bywhere

  • is the number of leptons and
  • is the number of antileptons.

Lepton number was introduced in 1953 to explain the absence of reactions such as

View the full Wikipedia page for Lepton number
↑ Return to Menu

Antiparticle in the context of Annihilation

In particle physics, annihilation is the process that occurs when a subatomic particle collides with its respective antiparticle to produce other particles, such as an electron colliding with a positron to produce two photons. The total energy and momentum of the initial pair are conserved in the process and distributed among a set of other particles in the final state. Antiparticles have exactly opposite additive quantum numbers from particles, so the sums of all quantum numbers of such an original pair are zero. Hence, any set of particles may be produced whose total quantum numbers are also zero as long as conservation of energy, conservation of momentum, and conservation of spin are obeyed.

During a low-energy annihilation, photon production is favored, since these particles have no mass. High-energy particle colliders produce annihilations where a wide variety of exotic heavy particles are created.

View the full Wikipedia page for Annihilation
↑ Return to Menu

Antiparticle in the context of Pair production

Pair production is the creation of a subatomic particle and its antiparticle from a neutral boson. Examples include creating an electron and a positron, a muon and an antimuon, or a proton and an antiproton. Pair production often refers specifically to a photon creating an electron–positron pair near a nucleus. As energy must be conserved, for pair production to occur, the incoming energy of the photon must be above a threshold of at least the total rest mass energy of the two particles created. Conservation of energy and momentum are the principal constraints on the process. All other conserved quantum numbers (angular momentum, electric charge, lepton number) of the produced particles must sum to zero – thus the created particles shall have opposite values of each other. For instance, if one particle has electric charge of +1 the other must have electric charge of −1, or if one particle has strangeness of +1 then another one must have strangeness of −1.

The probability of pair production in photon–matter interactions increases with photon energy and also increases approximately as the square of the atomic number (number of protons) of the nearby atom.

View the full Wikipedia page for Pair production
↑ Return to Menu

Antiparticle in the context of Electron-positron annihilation

Electron–positron annihilation occurs when an electron (e
) and a positron (e
, the electron's antiparticle) collide. At low energies, the result of the collision is the annihilation of the electron and positron, and the creation of energetic photons:

At high energies, other particles, such as B mesons or the W and Z bosons, can be created. All processes must satisfy a number of conservation laws, including:

View the full Wikipedia page for Electron-positron annihilation
↑ Return to Menu

Antiparticle in the context of Pair-instability supernova

A pair-instability supernova is a type of supernova predicted to occur when pair production, the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays, temporarily reduces the internal radiation pressure supporting a supermassive star's core against gravitational collapse. This pressure drop leads to a partial collapse, which in turn causes greatly accelerated burning in a runaway thermonuclear explosion, resulting in the star being blown completely apart without leaving a stellar remnant behind.

Pair-instability supernovae can only happen in stars with a mass range from around 130 to 250 solar masses and low to moderate metallicity (low abundance of elements other than hydrogen and helium – a situation common in Population III stars).

View the full Wikipedia page for Pair-instability supernova
↑ Return to Menu