Antenna (biology) in the context of "Rhaphidophoridae"

Play Trivia Questions online!

or

Skip to study material about Antenna (biology) in the context of "Rhaphidophoridae"

Ad spacer

⭐ Core Definition: Antenna (biology)

An antenna (plural: antennae) is one of a pair of appendages used for sensing in arthropods. Antennae are sometimes referred to as feelers.

Antennae are connected to the first one or two segments of the arthropod head. They vary widely in form but are always made of one or more jointed segments. While they are typically sensory organs, the exact nature of what they sense and how they sense it is not the same in all groups. Functions may variously include sensing touch, air motion, heat, vibration (sound), and especially smell or taste. Antennae are sometimes modified for other purposes, such as mating, brooding, swimming, and even anchoring the arthropod to a substrate. Larval arthropods have antennae that differ from those of the adult. Many crustaceans, for example, have free-swimming larvae that use their antennae for swimming. Antennae can also locate other group members if the insect lives in a group, like the ant.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Antenna (biology) in the context of Ant

Ants are eusocial insects of the family Formicidae and, along with the related wasps and bees, belong to the order Hymenoptera. Ants evolved from vespoid wasp ancestors in the Cretaceous period. More than 13,800 of an estimated total of 22,000 species have been classified. They are easily identified by their geniculate (elbowed) antennae and the distinctive node-like structure that forms their slender waists.

Ants form colonies that range in size from a few dozen individuals often living in small natural cavities to highly organised colonies that may occupy large territories with a sizeable nest (or nests) that consist of millions of individuals, in some cases they reach hundreds of millions of individuals in super colonies. Typical colonies consist of various castes of sterile, wingless females, most of which are workers (ergates), as well as soldiers (dinergates) and other specialised groups. Nearly all ant colonies also have some fertile males called "drones" and one or more fertile females called "queens" (gynes). The colonies are described as superorganisms because the ants appear to operate as a unified entity, collectively working together to support the colony.

↑ Return to Menu

Antenna (biology) in the context of Insect

Insects (from Latin insectum) are hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of jointed legs, compound eyes, and a pair of antennae. Insects are the most diverse group of animals, with more than a million described species; they represent more than half of all animal species.

The insect nervous system consists of a brain and a ventral nerve cord. Most insects reproduce by laying eggs. Insects breathe air through a system of paired openings along their sides, connected to small tubes that take air directly to the tissues. The blood therefore does not carry oxygen; it is only partly contained in vessels, and some circulates in an open hemocoel. Insect vision is mainly through their compound eyes, with additional small ocelli. Many insects can hear, using tympanal organs, which may be on the legs or other parts of the body. Their sense of smell is via receptors, usually on the antennae and the mouthparts.

↑ Return to Menu

Antenna (biology) in the context of Evolution of insects

The most recent understanding of the evolution of insects is based on studies of the following branches of science: molecular biology, insect morphology, paleontology, insect taxonomy, evolution, embryology, bioinformatics and scientific computing. The study of insect fossils is known as paleoentomology. It is estimated that the class of insects originated on Earth about 480 million years ago, in the Ordovician, at about the same time terrestrial plants appeared. Insects are thought to have evolved from a group of crustaceans. The first insects were landbound, but about 400 million years ago in the Devonian period one lineage of insects evolved flight, the first animals to do so. The oldest insect fossil has been proposed to be Rhyniognatha hirsti, estimated to be 400 million years old, but the insect identity of the fossil has been contested. Global climate conditions changed several times during the history of Earth, and along with it the diversity of insects. The Pterygotes (winged insects) underwent a major radiation in the Carboniferous (358 to 299 million years ago) while the Endopterygota (insects that go through different life stages with metamorphosis) underwent another major radiation in the Permian (299 to 252 million years ago).

Most extant orders of insects developed during the Permian period. Many of the early groups became extinct during the mass extinction at the Permo-Triassic boundary, the largest extinction event in the history of the Earth, around 252 million years ago. The survivors of this event evolved in the Triassic (252 to 201 million years ago) to what are essentially the modern insect orders that persist to this day. Most modern insect families appeared in the Jurassic (201 to 145 million years ago).

↑ Return to Menu

Antenna (biology) in the context of Shrimp

A shrimp (pl.: shrimp (US) or shrimps (UK)) is a common name typically used for crustaceans with an elongated body and a primarily swimming mode of locomotion – usually decapods belonging to the Caridea or Dendrobranchiata, although some crustaceans outside of this order are also referred to as "shrimp". Any small crustacean may also be referred to as "shrimp", regardless of resemblance.

More narrow definitions may be restricted to Caridea, to smaller species of either of the aforementioned groups, or only the marine species. Under a broader definition, shrimp may be synonymous with prawn, covering stalk-eyed swimming crustaceans with long, narrow muscular tails (abdomens), long whiskers (antennae), and slender, biramous legs. They swim forward by paddling the swimmerets on the underside of their abdomens, although their escape response is typically repeated flicks with the tail, driving them backwards very quickly ("lobstering"). Crabs and lobsters have strong walking legs, whereas shrimp typically have thin, fragile legs which they use primarily for perching.

↑ Return to Menu

Antenna (biology) in the context of Flies

Flies are insects of the order Diptera, the name being derived from the Greek δι- di- "two", and πτερόν pteron "wing". Insects of this order use only a single pair of wings to fly, the hindwings having evolved into advanced mechanosensory organs known as halteres, which act as high-speed sensors of rotational movement and allow dipterans to perform advanced aerobatics. Diptera is a large order containing more than 150,000 species including horse-flies, crane flies, hoverflies, mosquitoes and others.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. Their wing arrangement gives them great manoeuvrability in flight, and claws and pads on their feet enable them to cling to smooth surfaces. Flies undergo complete metamorphosis; the eggs are often laid on the larval food-source and the larvae, which lack true limbs, develop in a protected environment, often inside their food source. Other species are ovoviviparous, opportunistically depositing hatched or hatching larvae instead of eggs on carrion, dung, decaying material, or open wounds of mammals. The pupa is a tough capsule from which the adult emerges when ready to do so; flies mostly have short lives as adults.

↑ Return to Menu

Antenna (biology) in the context of Cephalization

Cephalization is an evolutionary trend in bilaterian animals that, over a sufficient number of generations, concentrates the special sense organs and nerve ganglia towards the front of the body where the mouth is located, often producing an enlarged head. This is associated with the animal's movement direction and bilateral symmetry. Cephalization of the nervous system has led to the formation of a brain with varying degrees of functional centralization in three phyla of bilaterian animals, namely the arthropods, cephalopod molluscs, and vertebrates. Hox genes organise aspects of cephalization in the bilaterians.

↑ Return to Menu