Annus Mirabilis papers in the context of "Einsteinian speed limit"

Play Trivia Questions online!

or

Skip to study material about Annus Mirabilis papers in the context of "Einsteinian speed limit"




⭐ Core Definition: Annus Mirabilis papers

The annus mirabilis papers (from Latin: annus mirabilis, lit.'miraculous year') are four papers that Albert Einstein published in the scientific journal Annalen der Physik (Annals of Physics) in 1905. As major contributions to the foundation of modern physics, these scientific publications were the ones for which he gained fame among physicists. They revolutionized science's understanding of the fundamental concepts of space, time, mass, and energy.

  1. The first paper explained the photoelectric effect, which established the energy of the light quanta , and was the only specific discovery mentioned in the citation awarding Einstein the 1921 Nobel Prize in Physics.
  2. The second paper explained Brownian motion, which established the Einstein relation and compelled physicists to accept the existence of atoms.
  3. The third paper introduced Einstein's special theory of relativity, which proclaims the constancy of the speed of light and derives the Lorentz transformations. Einstein also examined relativistic aberration and the transverse Doppler effect.
  4. The fourth, a consequence of special relativity, developed the principle of mass–energy equivalence, expressed in the equation and which led to the discovery and use of nuclear power decades later.

These four papers, together with quantum mechanics and Einstein's later general theory of relativity, are the foundation of modern physics.

↓ Menu

In this Dossier

Annus Mirabilis papers in the context of Special relativity

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 paper, "On the Electrodynamics of Moving Bodies", the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference (that is, frames of reference with no acceleration). This is known as the principle of relativity.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer. This is known as the principle of light constancy, or the principle of light speed invariance.

The first postulate was first formulated by Galileo Galilei (see Galilean invariance).

↑ Return to Menu

Annus Mirabilis papers in the context of Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen

"Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" (English: "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat") is the 1905 journal article, by Albert Einstein, that proved the reality of atoms, the modern understanding of which had been proposed in 1808 by John Dalton. It is one of the four groundbreaking papers Einstein published in 1905, in Annalen der Physik, in his miracle year.

In 1827, botanist Robert Brown used a microscope to look at dust grains floating in water. He found that the floating grains were moving about erratically; a phenomenon that became known as "Brownian motion". This was thought to be caused by water molecules knocking the grains about. In 1905, Albert Einstein proved the reality of these molecules and their motions by producing the first statistical physics analysis of Brownian motion. French physicist Jean Perrin used Einstein's results to experimentally determine the mass, and the dimensions, of atoms, thereby conclusively verifying Dalton's atomic theory.

↑ Return to Menu

Annus Mirabilis papers in the context of Michelson interferometer

The Michelson interferometer is a common configuration for optical interferometry and was invented by the American physicist Albert Abraham Michelson in 1887. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

The Michelson interferometer is employed in many scientific experiments and became well known for its use by Michelson and Edward Morley in the famous Michelson–Morley experiment (1887) in a configuration which would have detected the Earth's motion through the supposed luminiferous aether that most physicists at the time believed was the medium in which light waves propagated. The null result of that experiment essentially disproved the existence of such an aether, leading eventually to the special theory of relativity and the revolution in physics at the beginning of the twentieth century. In 2015, another application of the Michelson interferometer, LIGO, made the first direct observation of gravitational waves. That observation confirmed an important prediction of general relativity, validating the theory's prediction of space-time distortion in the context of large scale cosmic events (known as strong field tests).

↑ Return to Menu