Andesite in the context of Porphyritic


Andesite in the context of Porphyritic

Andesite Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Andesite in the context of "Porphyritic"


⭐ Core Definition: Andesite

Andesite (/ˈændəzt/) is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

Andesite is the extrusive equivalent of plutonic diorite. Characteristic of subduction zones, andesite represents the dominant rock type in island arcs. The average composition of the continental crust is andesitic. Along with basalts, andesites are a component of the Martian crust.

↓ Menu
HINT:

In this Dossier

Andesite in the context of Dacite

Dacite (/ˈdst/) is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

Dacite is relatively common, occurring in many tectonic settings. It is associated with andesite and rhyolite as part of the subalkaline tholeiitic and calc-alkaline magma series.

View the full Wikipedia page for Dacite
↑ Return to Menu

Andesite in the context of Stratovolcano

A stratovolcano, also known as a composite volcano, is a typically conical volcano built up by many alternating layers (strata) of hardened lava and tephra. Unlike shield volcanoes, stratovolcanoes are characterized by a steep profile with a summit crater and explosive eruptions. Some have collapsed summit craters called calderas. The lava flowing from stratovolcanoes typically cools and solidifies before spreading far, due to high viscosity. The magma forming this lava is often felsic, having high to intermediate levels of silica (as in rhyolite, dacite, or andesite), with lesser amounts of less viscous mafic magma. Extensive felsic lava flows are uncommon, but can travel as far as 8 kilometres (5 miles).

The term composite volcano is used because strata are usually mixed and uneven instead of neat layers. They are among the most common types of volcanoes; more than 700 stratovolcanoes have erupted lava during the Holocene Epoch (the last 11,700 years), and many older, now extinct, stratovolcanoes erupted lava as far back as Archean times. Stratovolcanoes are typically found in subduction zones but they also occur in other geological settings. Two examples of stratovolcanoes famous for catastrophic eruptions are Krakatoa in Indonesia (which erupted in 1883 claiming 36,000 lives) and Mount Vesuvius in Italy (which erupted in 79 A.D killing an estimated 2,000 people). In modern times, Mount St. Helens (1980) in Washington State, US, and Mount Pinatubo (1991) in the Philippines have erupted catastrophically, but with fewer deaths.

View the full Wikipedia page for Stratovolcano
↑ Return to Menu

Andesite in the context of Stonemasonry

Stonemasonry or stonecraft is the creation of buildings, structures, and sculpture using stone as the primary material. Stonemasonry is the craft of shaping and arranging stones, often together with mortar and even the ancient lime mortar, to wall or cover formed structures.

The basic tools, methods and skills of the banker mason have existed as a trade for thousands of years. It is one of the oldest activities and professions in human history. Many of the long-lasting, ancient shelters, temples, monuments, artifacts, fortifications, roads, bridges, and entire cities were built of stone. Famous works of stonemasonry include Göbekli Tepe, the Egyptian pyramids, the Taj Mahal, Cusco's Incan Wall, Taqwesan, Easter Island's statues, Angkor Wat, Borobudur, Tihuanaco, Tenochtitlan, Persepolis, the Parthenon, Stonehenge, the Great Wall of China, the Mesoamerican pyramids, Chartres Cathedral, and the Stari Most.

View the full Wikipedia page for Stonemasonry
↑ Return to Menu

Andesite in the context of Lava dome

In volcanology, a lava dome is a circular, mound-shaped protrusion resulting from the slow extrusion of viscous lava from a volcano. Dome-building eruptions are common, particularly in convergent plate boundary settings. Around 6% of eruptions on Earth form lava domes. The geochemistry of lava domes can vary from basalt (e.g. Semeru, 1946) to rhyolite (e.g. Chaiten, 2010) although the majority are of intermediate composition (such as Santiaguito, dacite-andesite, present day). The characteristic dome shape is attributed to high viscosity that prevents the lava from flowing very far. This high viscosity can be obtained in two ways: by high levels of silica in the magma, or by degassing of fluid magma. Since viscous basaltic and andesitic domes weather fast and easily break apart by further input of fluid lava, most of the preserved domes have high silica content and consist of rhyolite or dacite.

Existence of lava domes has been suggested for some domed structures on the Moon, Venus, and Mars, e.g. the Martian surface in the western part of Arcadia Planitia and within Terra Sirenum.

View the full Wikipedia page for Lava dome
↑ Return to Menu

Andesite in the context of Tholeiite

The tholeiitic magma series (/ˌθlˈɪtɪk/) is one of two main magma series in subalkaline igneous rocks, the other being the calc-alkaline series. A magma series is a chemically distinct range of magma compositions that describes the evolution of a mafic magma into a more evolved, silica rich end member. Rock types of the tholeiitic magma series include tholeiitic basalt, ferro-basalt, tholeiitic basaltic andesite, tholeiitic andesite, dacite and rhyolite. The variety of basalt in the series was originally called tholeiite but the International Union of Geological Sciences recommends that tholeiitic basalt be used in preference to that term.

Tholeiitic rock types tend to be more enriched in iron and less enriched in magnesium and aluminium than calc-alkaline rock types. They are thought to form in a less oxidized environment than calc-alkaline rocks. Tholeiitic basalt is formed at mid-ocean ridges and makes up much of the oceanic crust. Almost all the basalt found on the Moon is tholeiitic basalt.

View the full Wikipedia page for Tholeiite
↑ Return to Menu

Andesite in the context of Calc-alkaline magma series

The calc-alkaline magma series is one of two main subdivisions of the subalkaline magma series, the other subalkaline magma series being the tholeiitic series. A magma series is a series of compositions that describes the evolution of a mafic magma, which is high in magnesium and iron and produces basalt or gabbro, as it fractionally crystallizes to become a felsic magma, which is low in magnesium and iron and produces rhyolite or granite. Calc-alkaline rocks are rich in alkaline earths (magnesia and calcium oxide) and alkali metals and make up a major part of the crust of the continents.

The diverse rock types in the calc-alkaline series include volcanic types such as basalt, andesite, dacite, rhyolite, and also their coarser-grained intrusive equivalents (gabbro, diorite, granodiorite, and granite). They do not include silica-undersaturated, alkalic, or peralkaline rocks.

View the full Wikipedia page for Calc-alkaline magma series
↑ Return to Menu

Andesite in the context of Borobudur

Borobudur, also transcribed Barabudur (Indonesian: Candi Borobudur, Javanese: ꦕꦤ꧀ꦝꦶꦧꦫꦧꦸꦝꦸꦂ, romanized: Candhi Barabudhur), is a 9th-century Mahayana Buddhist temple in Magelang Regency, near the town of Muntilan, northwest of the city of Yogyakarta, in Central Java, Indonesia.

Constructed of gray andesite-like stone, the temple consists of nine stacked platforms, six square and three circular, topped by a central dome. It is decorated with 2,672 relief panels and originally 504 Buddha statues. The central dome is surrounded by 72 Buddha statues, each seated inside a perforated stupa. The monument guides pilgrims through an extensive system of stairways and corridors with 1,460 narrative relief panels on the walls and the balustrades. Borobudur has one of the world's most extensive collections of Buddhist reliefs.

View the full Wikipedia page for Borobudur
↑ Return to Menu

Andesite in the context of Vesicular texture

Vesicular texture is a volcanic rock texture characterized by a rock being pitted with many cavities (known as vesicles) at its surface and inside. This texture is common in aphanitic, or glassy, igneous rocks that have come to the surface of the Earth, a process known as extrusion. As magma rises to the surface the pressure on it decreases. When this happens gasses dissolved in the magma are able to come out of solution, forming gas bubbles (the cavities) inside it. When the magma finally reaches the surface as lava and cools, the rock solidifies around the gas bubbles and traps them inside, preserving them as holes filled with gas called vesicles.

A related texture is amygdaloidal in which the volcanic rock, usually basalt or andesite, has cavities, or vesicles, that are filled with secondary minerals, such as zeolites, calcite, quartz, or chalcedony. Individual cavity fillings are termed amygdules (American usage) or amygdales (British usage). Sometimes these can be sources of semi-precious or precious stones such as diamonds.

View the full Wikipedia page for Vesicular texture
↑ Return to Menu

Andesite in the context of Scoria

Scoria or cinder is a pyroclastic, highly vesicular, dark-colored volcanic rock formed by ejection from a volcano as a molten blob and cooled in the air to form discrete grains called clasts. It is typically dark in color (brown, black or purplish-red), and basaltic or andesitic in composition. Scoria has relatively low density, as it is riddled with macroscopic ellipsoidal vesicles (gas bubbles), but in contrast to pumice, scoria usually has a specific gravity greater than 1 and sinks in water. Some scoria can have a specific gravity similar to pumice especially if the vesicles are large and abundant alongside the walls being thin causing it to float. Examples of floating scoria were observed at the Taal Caldera lake in 2023. Scoria from a 1993 undersea eruption near Socorro Island in the Pacific Ocean was observed to float on the ocean surface for up to 15 minutes before it sank.

Scoria may form as part of a lava flow, typically near its surface as a crust, or more commonly as fragmental ejecta (lapilli, volcanic blocks, and volcanic bombs), for instance in Strombolian eruptions that form steep-sided scoria cones, also called cinder cones. Basaltic to andesitic Plinian eruptions can also form scoria like when Taal erupted in 2020 which was of andesitic composition. Scoria's holes or vesicles form when gases dissolved in the original magma come out of solution as it erupts, creating bubbles in the molten rock, some of which are frozen in place as the rock cools and solidifies. Most scoria is composed of glassy fragments and may contain phenocrysts. A sample from Yemen was mainly composed of volcanic glass with a few zeolites (e.g., clinoptilolite).

View the full Wikipedia page for Scoria
↑ Return to Menu

Andesite in the context of Matrix (geology)

The matrix or groundmass of a rock is the finer-grained mass of material in which larger grains, crystals, or clasts are embedded.

The matrix of an igneous rock consists of finer-grained, often microscopic, crystals in which larger crystals, called phenocrysts, are embedded. This porphyritic texture is indicative of multi-stage cooling of magma. For example, porphyritic andesite will have large phenocrysts of plagioclase in a fine-grained matrix. Also in South Africa, diamonds are often mined from a matrix of weathered clay-like rock (kimberlite) called "yellow ground".

View the full Wikipedia page for Matrix (geology)
↑ Return to Menu

Andesite in the context of Phenocryst

A phenocryst is an early forming, relatively large and usually conspicuous crystal distinctly larger than the grains of the rock groundmass of an igneous rock. Such rocks that have a distinct difference in the size of the crystals are called porphyries, and the adjective porphyritic is used to describe them. Phenocrysts often have euhedral forms, either due to early growth within a magma, or by post-emplacement recrystallization. Normally the term phenocryst is not used unless the crystals are directly observable, which is sometimes stated as greater than 0.5 mm (0.020 in) in diameter. Phenocrysts below this level, but still larger than the groundmass crystals, are termed microphenocrysts. Very large phenocrysts are termed megaphenocrysts. Some rocks contain both microphenocrysts and megaphenocrysts. In metamorphic rocks, crystals similar to phenocrysts are called porphyroblasts.

Phenocrysts are more often found in the lighter (higher silica) igneous rocks such as felsites and andesites, although they occur throughout the igneous spectrum including in the ultramafics. The largest crystals found in some pegmatites are often phenocrysts being significantly larger than the other minerals.

View the full Wikipedia page for Phenocryst
↑ Return to Menu

Andesite in the context of Intermediate composition

In igneous petrology, an intermediate composition refers to the chemical composition of a rock that has 51.5–63 wt% SiO2 being an intermediate between felsic and mafic compositions. Typical intermediate rocks include andesite and trachyandesite among volcanic rocks and diorite and granodiorite among plutonic rocks.

View the full Wikipedia page for Intermediate composition
↑ Return to Menu

Andesite in the context of Diorite

Diorite (/ˈd.ərt/ DY-ə-ryte) is an intrusive igneous rock formed by the slow cooling underground of magma (molten rock) that has a moderate content of silica and a relatively low content of alkali metals. It is intermediate in composition between low-silica (mafic) gabbro and high-silica (felsic) granite.

Diorite is found in mountain-building belts (orogens) on the margins of continents. It has the same composition as the fine-grained volcanic rock, andesite, which is also common in orogens.

View the full Wikipedia page for Diorite
↑ Return to Menu

Andesite in the context of Basaltic andesite

Basaltic andesite or andesibasalt is a volcanic rock that is intermediate in composition between basalt and andesite. It is composed predominantly of augite and plagioclase. Basaltic andesite can be found in volcanoes around the world, including in Central America and the Andes of South America.

View the full Wikipedia page for Basaltic andesite
↑ Return to Menu

Andesite in the context of Magmatism

Magmatism is the emplacement of magma within and at the surface of the outer layers of a terrestrial planet, which solidifies as igneous rocks. It does so through magmatic activity or igneous activity, the production, intrusion and extrusion of magma or lava. Volcanism is the surface expression of magmatism.

Magmatism is one of the main processes responsible for mountain formation. The nature of magmatism depends on the tectonic setting. For example, andesitic magmatism is associated with the formation of island arcs at convergent plate boundaries while basaltic magmatism is found at mid-ocean ridges during sea-floor spreading at divergent plate boundaries.

View the full Wikipedia page for Magmatism
↑ Return to Menu