Anatomy in the context of Adenoid


Anatomy in the context of Adenoid

Anatomy Study page number 1 of 13

Play TriviaQuestions Online!

or

Skip to study material about Anatomy in the context of "Adenoid"


⭐ Core Definition: Anatomy

Anatomy (from Ancient Greek ἀνατομή (anatomḗ) 'dissection') is the branch of morphology concerned with the study of the internal and external structure of organisms and their parts. Anatomy is a branch of natural science that deals with the structural organization of living things. It is an old science, having its beginnings in prehistoric times.

Anatomy is inherently tied to developmental biology, embryology, comparative anatomy, evolutionary biology, and phylogeny, as these are the processes by which anatomy is generated, both over immediate and long-term timescales. Anatomy and physiology, which study the structure and function of organisms and their parts respectively, make a natural pair of related disciplines, and are often studied together. Human anatomy is one of the essential basic sciences that are applied in medicine, and is often studied alongside physiology.

↓ Menu
HINT:

In this Dossier

Anatomy in the context of Body proportions

Body proportions is the study of artistic anatomy, which attempts to explore the relation of the elements of the human body to each other and to the whole. These ratios are used in depictions of the human figure and may become part of an artistic canon of body proportion within a culture. Academic art of the nineteenth century demanded close adherence to these reference metrics and some artists in the early twentieth century rejected those constraints and consciously mutated them.

View the full Wikipedia page for Body proportions
↑ Return to Menu

Anatomy in the context of Galen

Aelius Galenus or Claudius Galenus (Greek: Κλαύδιος Γαληνός; September 129 – c. 216 AD), often anglicized as Galen (/ˈɡlən/) or Galen of Pergamon, was a Roman and Greek physician, surgeon, and philosopher. Considered to be one of the most accomplished of all medical researchers of antiquity, Galen influenced the development of various scientific disciplines, including anatomy, physiology, pathology, pharmacology, and neurology, as well as philosophy and logic.

The son of Aelius Nicon, a wealthy Greek architect with scholarly interests, Galen received a comprehensive education that prepared him for a successful career as a physician and philosopher. Born in the ancient city of Pergamon (present-day Bergama, Turkey), Galen traveled extensively, exposing himself to a wide variety of medical theories and discoveries before settling in Rome, where he served prominent members of Roman society and eventually was given the position of personal physician to several emperors.

View the full Wikipedia page for Galen
↑ Return to Menu

Anatomy in the context of Fruit tree

A fruit tree is a tree which bears fruit that is consumed or used by animals and humans. All trees that are flowering plants produce fruit, which are the ripened ovaries of flowers containing one or more seeds. In horticultural usage, the term "fruit tree" is limited to those that provide fruit for human food. Types of fruits are described and defined elsewhere (see Fruit), but would include "fruit" in a culinary sense, as well as some nut-bearing trees, such as walnuts.

The scientific study and the cultivation of fruits is called pomology, which divides fruits into groups based on plant morphology and anatomy. Some of those groups are pome fruits, which include apples and pears, and stone fruits, which include peaches/nectarines, almonds, apricots, plums and cherries.

View the full Wikipedia page for Fruit tree
↑ Return to Menu

Anatomy in the context of Johann Wolfgang von Goethe

Johann Wolfgang von Goethe (28 August 1749 – 22 March 1832) was a German polymath who is widely regarded as the most influential writer in the German language. His work has had a wide-ranging influence on literary, political, and philosophical thought in the Western world from the late 18th century to the present. A poet, playwright, novelist, scientist, statesman, theatre-director, and critic, Goethe wrote a wide range of works, including plays, poetry and aesthetic criticism, as well as treatises on botany, anatomy, and colour.

Goethe took up residence in Weimar in 1775 following the success of his first novel, The Sorrows of Young Werther (1774), and joined a thriving intellectual and cultural environment under the patronage of Duchess Anna Amalia that formed the basis of Weimar Classicism. He was ennobled by Karl August, Duke of Saxe-Weimar, in 1782. Goethe was an early participant in the Sturm und Drang literary movement. During his first ten years in Weimar, Goethe became a member of the Duke's privy council (1776–1785), sat on the war and highway commissions, oversaw the reopening of silver mines in nearby Ilmenau, and implemented a series of administrative reforms at the University of Jena. He also contributed to the planning of Weimar's botanical park and the rebuilding of its Ducal Palace.

View the full Wikipedia page for Johann Wolfgang von Goethe
↑ Return to Menu

Anatomy in the context of Science in the Renaissance

During the Renaissance, great advances occurred in geography, astronomy, chemistry, physics, mathematics, manufacturing, anatomy and engineering. The collection of ancient scientific texts began in earnest at the start of the 15th century and continued up to the Fall of Constantinople in 1453, and the invention of printing allowed a faster propagation of new ideas. Nevertheless, some have seen the Renaissance, at least in its initial period, as one of scientific backwardness. Historians like George Sarton and Lynn Thorndike criticized how the Renaissance affected science, arguing that progress was slowed for some amount of time. Humanists favored human-centered subjects like politics and history over study of natural philosophy or applied mathematics. More recently, however, scholars have acknowledged the positive influence of the Renaissance on mathematics and science, pointing to factors like the rediscovery of lost or obscure texts and the increased emphasis on the study of language and the correct reading of texts.

Marie Boas Hall coined the term Scientific Renaissance to designate the early phase of the Scientific Revolution, 1450–1630. More recently, Peter Dear has argued for a two-phase model of early modern science: a Scientific Renaissance of the 15th and 16th centuries, focused on the restoration of the natural knowledge of the ancients; and a Scientific Revolution of the 17th century, when scientists shifted from recovery to innovation.

View the full Wikipedia page for Science in the Renaissance
↑ Return to Menu

Anatomy in the context of Neck

The neck is the part of the body in many vertebrates that connects the head to the torso. It supports the weight of the head and protects the nerves that transmit sensory and motor information between the brain and the rest of the body. Additionally, the neck is highly flexible, allowing the head to turn and move in all directions. Anatomically, the human neck is divided into four compartments: vertebral, visceral, and two vascular compartments. Within these compartments, the neck houses the cervical vertebrae, the cervical portion of the spinal cord, upper parts of the respiratory and digestive tracts, endocrine glands, nerves, arteries⁣⁣ and veins. The muscles of the neck, which are separate from the compartments, form the boundaries of the neck triangles.

In anatomy, the neck is also referred to as the cervix or collum. However, when the term cervix is used alone, it often refers to the uterine cervix, the neck of the ⁣⁣uterus⁣⁣. Therefore, the adjective cervical can refer either to the neck (as in cervical vertebrae or cervical lymph nodes) or to the uterine cervix (as in cervical cap or cervical cancer).

View the full Wikipedia page for Neck
↑ Return to Menu

Anatomy in the context of Brain size

The size of the brain is a frequent topic of study within the fields of anatomy, biological anthropology, animal science and evolution. Measuring brain size and cranial capacity is relevant both to humans and other animals, and can be done by weight or volume via MRI scans, by skull volume, or by neuroimaging intelligence testing.

The relationship between brain size and intelligence has been a controversial and frequently investigated question. In 2021 scientists from Stony Brook University and the Max Planck Institute of Animal Behavior published findings showing that the brain size to body size ratio of different species has changed over time in response to a variety of conditions and events.

View the full Wikipedia page for Brain size
↑ Return to Menu

Anatomy in the context of Physician

A medical doctor, also known as a physician (American and Canadian English) or medical practitioner (British English), is a health professional who practices medicine, which is concerned with promoting, maintaining or restoring health through the study, diagnosis, prognosis and treatment of disease, injury, and other physical and mental impairments. Doctors may focus their practice on certain disease categories, types of patients, and methods of treatment—known as specialities—or they may assume responsibility for the provision of continuing and comprehensive medical care to individuals, families, and communities—known as general practice. Medical practice properly requires both a detailed knowledge of the academic disciplines, such as anatomy and physiology, underlying diseases, and their treatment, which is the science of medicine, and a decent competence in its applied practice, which is the art or craft of the profession.

Both the role of doctors and the meaning of the word itself vary around the world. Degrees and other qualifications vary widely, but there are some common elements, such as medical ethics requiring that doctors show consideration, compassion, and benevolence for their patients.

View the full Wikipedia page for Physician
↑ Return to Menu

Anatomy in the context of Aristotelian physics

Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion (change with respect to place), quantitative change (change with respect to size or number), qualitative change, and substantial change ("coming to be" [coming into existence, 'generation'] or "passing away" [no longer existing, 'corruption']). To Aristotle, 'physics' was a broad field including subjects which would now be called the philosophy of mind, sensory experience, memory, anatomy and biology. It constitutes the foundation of the thought underlying many of his works.

Key concepts of Aristotelian physics include the structuring of the cosmos into concentric spheres, with the Earth at the centre and celestial spheres around it. The terrestrial sphere was made of four elements, namely earth, air, fire, and water, subject to change and decay. The celestial spheres were made of a fifth element, an unchangeable aether. Objects made of these elements have natural motions: those of earth and water tend to fall; those of air and fire, to rise. The speed of such motion depends on their weights and the density of the medium. Aristotle argued that a vacuum could not exist as speeds would become infinite.

View the full Wikipedia page for Aristotelian physics
↑ Return to Menu

Anatomy in the context of Cytology

Cell biology, cellular biology, or cytology, is the branch of biology that studies the structure, function, and behavior of the cells. All organisms are made of cells. A cell is the basic unit of life that is responsible for the living and functioning of an organism. Cell biology encompasses both prokaryotic and eukaryotic cells, with subtopics including the study of cell metabolism, cell communication, cell cycle, biochemistry, and cell composition.

The study of cells is performed using microscopy techniques, cell culture, and cell fractionation. These are used for research into how cells function, which ultimately gives insight into larger organisms. Knowing the components of cells and how cells work is fundamental to all biological sciences and is essential for research in biomedical fields such as cancer, and other diseases. Research in cell biology is interconnected to other fields such as genetics, molecular genetics, molecular biology, medical microbiology, immunology, and cytochemistry.

View the full Wikipedia page for Cytology
↑ Return to Menu

Anatomy in the context of Four-field approach

The four-field approach in anthropology sees the discipline as composed of the four sub fields of Archaeology, Linguistics, Physical Anthropology, and Cultural Anthropology (known jocularly to students as "stones", "tones", "bones", and "thrones"). The approach is conventionally understood as having been developed by Franz Boas, who developed the discipline of anthropology in the United States. A 2013 re-assessment of the evidence has indicated that the idea of four-field anthropology has a more complex 19th-century history in Europe and North America. It is most likely that the approach was being used simultaneously in different parts of the world, but was not widely discussed until it was being taught at the collegiate level in the United States, Germany, England, and France by 1902. For Boas, the four-field approach was motivated by his holistic approach to the study of human behavior, which includedintegrated analytical attention to culture history, material culture, anatomy and population history, customs and social organization, folklore, grammar and language use. For most of the 20th century, U.S. anthropology departments housed anthropologists specializing in all of the four branches, but with the increasing professionalization and specialization, elements such as linguistics and archaeology came to be regarded largely as separate disciplines. Today, physical anthropologists often collaborate more closely with biology and medicine than with cultural anthropology. However, it is widely accepted that a complete four-field analysis is needed in order to accurately and fully explain an anthropological topic.

The four-field approach is dependent on collaboration. However, collaboration in any field can get costly. To counter this, the four-field approach is often taught to students as they go through college courses. By teaching all four disciplines, the anthropological field is able to produce scholars that are knowledgeable of all subfields. However, it is common and often recommended for an anthropologist to have a specialization. The four-field approach also encourages scholars to look holistically at an artifact, ecofact, data, etc. in almost an omnipotent way, meaning that having knowledge from all perspectives helps to eliminate bias and/or incorrect assumptions of past and present cultures.

View the full Wikipedia page for Four-field approach
↑ Return to Menu

Anatomy in the context of Human anatomy

Human anatomy (gr. ἀνατομία, "dissection", from ἀνά, "up", and τέμνειν, "cut") is primarily the scientific study of the morphology of the human body. Anatomy is subdivided into gross anatomy and microscopic anatomy. Gross anatomy (also called macroscopic anatomy, topographical anatomy, regional anatomy, or anthropotomy) is the study of anatomical structures that can be seen by the naked eye. Microscopic anatomy is the study of minute anatomical structures assisted with microscopes, which includes histology (the study of the organization of tissues), and cytology (the study of cells). Anatomy, human physiology (the study of function), and biochemistry (the study of the chemistry of living structures) are complementary basic medical sciences that are generally together (or in tandem) to students studying medical sciences.

In some of its facets human anatomy is closely related to embryology, comparative anatomy and comparative embryology, through common roots in evolution; for example, much of the human body maintains the ancient segmental pattern that is present in all vertebrates with basic units being repeated, which is particularly obvious in the vertebral column and in the ribcage, and can be traced from very early embryos.

View the full Wikipedia page for Human anatomy
↑ Return to Menu

Anatomy in the context of Zoology

Zoology (/zˈɒləi/ zoh-OL-ə-jee, UK also /zuˈ-/ zoo-) is the scientific study of animals. Its studies include the structure, embryology, classification, habits, and distribution of all animals, both living and extinct, and how they interact with their ecosystems. Zoology is one of the primary branches of biology. The term is derived from Ancient Greek ζῷον, zōion ('animal'), and λόγος, logos ('knowledge', 'study').

Although humans have always been interested in the natural history of the animals they saw around them, and used this knowledge to domesticate certain species, the formal study of zoology can be said to have originated with Aristotle. He viewed animals as living organisms, studied their structure and development, and considered their adaptations to their surroundings and the function of their parts. Modern zoology has its origins during the Renaissance and early modern period, with Carl Linnaeus, Antonie van Leeuwenhoek, Robert Hooke, Charles Darwin, Gregor Mendel and many others.

View the full Wikipedia page for Zoology
↑ Return to Menu

Anatomy in the context of Neuroscience

Neuroscience is the scientific study of the nervous system (the brain, spinal cord, and peripheral nervous system), its functions, and its disorders. It is a multidisciplinary science that combines physiology, anatomy, molecular biology, developmental biology, cytology, psychology, physics, computer science, chemistry, medicine, statistics, and mathematical modeling to understand the fundamental and emergent properties of neurons, glia, and neural circuits. The understanding of the biological basis of learning, memory, behavior, perception, and consciousness has been described by Eric Kandel as the "epic challenge" of the biological sciences.

The scope of neuroscience has broadened over time to include different approaches used to study the nervous system at different scales. The techniques used by neuroscientists have expanded enormously, from molecular and cellular studies of individual neurons to imaging of sensory, motor, and cognitive tasks in the brain.

View the full Wikipedia page for Neuroscience
↑ Return to Menu

Anatomy in the context of Morphology (biology)

In biology, morphology is the study of the form and structure of organisms and their specific structural features.

This includes aspects of the outward appearance (shape, structure, color, pattern, size), as well as the form and structure of internal parts like bones and organs, i.e., anatomy. This is in contrast to physiology, which deals primarily with function. Morphology is a branch of life science dealing with the study of the overall structure of an organism or taxon and its component parts.

View the full Wikipedia page for Morphology (biology)
↑ Return to Menu

Anatomy in the context of List of life sciences

This list of life sciences comprises the branches of science that involve the scientific study of life — such as animals (including human beings), microorganisms, and plants. This is one of the two major branches of natural science, the other being physical science, which is concerned with non-living matter. Biology is the overall natural science that studies life, with the other life sciences as its sub-disciplines.

Some life sciences focus on a specific type of organism. For example, zoology is the study of animals, while botany is the study of plants. Other life sciences focus on aspects common to all or many life forms, such as anatomy and genetics. Some focus on the micro scale (e.g., molecular biology, biochemistry), while others focus on larger scales (e.g., cytology, immunology, ethology, pharmacy, ecology). Another major branch of life sciences involves understanding the mindneuroscience. Life-science discoveries are helpful in improving the quality and standard of life and have applications in health, agriculture, medicine, and the pharmaceutical and food science industries. For example, they have provided information on certain diseases, which has helped in the understanding of human health.

View the full Wikipedia page for List of life sciences
↑ Return to Menu

Anatomy in the context of Fetus

A fetus or foetus (/ˈftəs/; pl.: fetuses, foetuses, rarely feti or foeti) is the unborn offspring of a viviparous animal that develops from an embryo. Following the embryonic stage, the fetal stage of development takes place. Prenatal development is a continuum, with no clear defining feature distinguishing an embryo from a fetus. However, in general a fetus is characterized by the presence of all the major body organs, though they will not yet be fully developed and functional, and some may not yet be situated in their final anatomical location.

In human prenatal development, fetal development begins from the ninth week after fertilization (which is the eleventh week of gestational age) and continues until the birth of a newborn.

View the full Wikipedia page for Fetus
↑ Return to Menu

Anatomy in the context of Upper limb

The upper limbs or upper extremities are the forelimbs of an upright-postured tetrapod vertebrate, extending from the scapulae and clavicles down to and including the digits, including all the musculatures and ligaments involved with the shoulder, elbow, wrist and knuckle joints. In humans, each upper limb is divided into the shoulder, arm, elbow, forearm, wrist and hand, and is primarily used for climbing, lifting and manipulating objects. In anatomy, just as arm refers to the upper arm, leg refers to the lower leg.

View the full Wikipedia page for Upper limb
↑ Return to Menu