Aristotelian physics in the context of "Anatomy"

Play Trivia Questions online!

or

Skip to study material about Aristotelian physics in the context of "Anatomy"

Ad spacer

⭐ Core Definition: Aristotelian physics

Aristotelian physics is the form of natural philosophy described in the works of the Greek philosopher Aristotle (384–322 BC). In his work Physics, Aristotle intended to establish general principles of change that govern all natural bodies, both living and inanimate, celestial and terrestrial – including all motion (change with respect to place), quantitative change (change with respect to size or number), qualitative change, and substantial change ("coming to be" [coming into existence, 'generation'] or "passing away" [no longer existing, 'corruption']). To Aristotle, 'physics' was a broad field including subjects which would now be called the philosophy of mind, sensory experience, memory, anatomy and biology. It constitutes the foundation of the thought underlying many of his works.

Key concepts of Aristotelian physics include the structuring of the cosmos into concentric spheres, with the Earth at the centre and celestial spheres around it. The terrestrial sphere was made of four elements, namely earth, air, fire, and water, subject to change and decay. The celestial spheres were made of a fifth element, an unchangeable aether. Objects made of these elements have natural motions: those of earth and water tend to fall; those of air and fire, to rise. The speed of such motion depends on their weights and the density of the medium. Aristotle argued that a vacuum could not exist as speeds would become infinite.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Aristotelian physics in the context of Ptolemy

Claudius Ptolemy (/ˈtɒləmi/; Ancient Greek: Πτολεμαῖος, Ptolemaios; Latin: Claudius Ptolemaeus; c. 100 – 160s/170s AD), better known mononymously as Ptolemy, was a Greco-Roman mathematician, astronomer, astrologer, geographer, and music theorist who wrote about a dozen scientific treatises, three of which were important to later Byzantine, Islamic, and Western European science. The first was his astronomical treatise now known as the Almagest, originally entitled Mathēmatikḗ Syntaxis (Μαθηματικὴ Σύνταξις, Mathēmatikḗ Syntaxis, lit.'Mathematical Treatise'). The second is the Geography, which is a thorough discussion on maps and the geographic knowledge of the Greco-Roman world. The third is the astrological treatise in which he attempted to adapt horoscopic astrology to the Aristotelian natural philosophy of his day. This is sometimes known as the Apotelesmatika (Αποτελεσματικά, 'On the Effects') but more commonly known as the Tetrábiblos (from the Koine Greek meaning 'four books'; Latin: Quadripartitum).

The Catholic Church promoted his work, which included the only mathematically sound geocentric model of the Solar System, and unlike most Greek mathematicians, Ptolemy's writings (foremost the Almagest) never ceased to be copied or commented upon, both in late antiquity and in the Middle Ages. However, it is likely that only a few truly mastered the mathematics necessary to understand his works, as evidenced particularly by the many abridged and watered-down introductions to Ptolemy's astronomy that were popular among the Arabs and Byzantines. His work on epicycles is now seen as a very complex theoretical model built in order to explain a false tenet based on faith.

↑ Return to Menu

Aristotelian physics in the context of Potential

Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple release of energy by objects to the realization of abilities in people.

The philosopher Aristotle incorporated this concept into his theory of potentiality and actuality (in Greek, dynamis and energeia), translated into Latin as potentia and actualitas (earlier also possibilitas and efficacia). a pair of closely connected principles which he used to analyze motion, causality, ethics, and physiology in his Physics, Metaphysics, Nicomachean Ethics, and De Anima, which is about the human psyche. That which is potential can theoretically be made actual by taking the right action; for example, a boulder on the edge of a cliff has potential to fall that could be actualized by pushing it over the edge.

↑ Return to Menu

Aristotelian physics in the context of Physics in the medieval Islamic world

The natural sciences saw various advancements during the Golden Age of Islam (from roughly the mid 8th to the mid 13th centuries), adding a number of innovations to the Transmission of the Classics (such as Aristotle, Ptolemy, Euclid, Neoplatonism). During this period, Islamic theology was encouraging of thinkers to find knowledge. Thinkers from this period included Al-Farabi, Abu Bishr Matta, Ibn Sina, al-Hassan Ibn al-Haytham and Ibn Bajjah. These works and the important commentaries on them were the wellspring of science during the medieval period. They were translated into Arabic, the lingua franca of this period.

Islamic scholarship in the sciences had inherited Aristotelian physics from the Greeks and during the Islamic Golden Age developed it further. However the Islamic world had a greater respect for knowledge gained from empirical observation, and believed that the universe is governed by a single set of laws. Their use of empirical observation led to the formation of crude forms of the scientific method. The study of physics in the Islamic world started in Iraq and Egypt. Fields of physics studied in this period include optics, mechanics (including statics, dynamics, kinematics and motion), and astronomy.

↑ Return to Menu

Aristotelian physics in the context of Sublunary sphere

In Aristotelian physics and Greek astronomy, the sublunary sphere is the region of the geocentric cosmos below the Moon, consisting of the four classical elements: earth, water, air, and fire.

The sublunary sphere was the realm of changing nature. Beginning with the Moon, up to the limits of the universe, everything (to classical astronomy) was permanent, regular and unchanging—the region of aether where the planets and stars are located. Only in the sublunary sphere did the powers of physics hold sway.

↑ Return to Menu

Aristotelian physics in the context of Theory of impetus

The theory of impetus, developed in the Middle Ages, attempts to explain the forced motion of a body, what it is, and how it comes about or ceases. It is important to note that in ancient and medieval times, motion was always considered absolute, relative to the Earth as the center of the universe.

The theory of impetus is an auxiliary or secondary theory of Aristotelian dynamics, put forth initially to explain projectile motion against gravity. Aristotelian dynamics of forced (in antiquity called "unnatural") motion states that a body (without a moving soul) only moves when an external force is constantly driving it. The greater the force acting, the proportionally greater the speed of the body. If the force stops acting, the body immediately returns to the natural state of rest. As we know today, this idea is wrong. It also states—as clearly formulated by John of Jadun in his work Quaestiones super 8 libros Physicorum Aristotelis from 1586—that not only motion but also force is transmitted to the medium, such that this force propagates continuously from layer to layer of air, becoming weaker and weaker until it finally dies out. This is how the body finally comes to rest.

↑ Return to Menu

Aristotelian physics in the context of Christopher Wren

Sir Christopher Wren FRS (/rɛn/; 30 October 1632 [O.S. 20 October] – 8 March 1723 [O.S. 25 February]) was an English architect, astronomer, mathematician and physicist who is one of the most highly acclaimed architects in the history of England. Known for his work in the English Baroque style, he was accorded responsibility for rebuilding 52 churches in the City of London after the Great Fire in 1666, including what is regarded as his masterpiece, St Paul's Cathedral, on Ludgate Hill, completed in 1710.

The principal creative responsibility for a number of the churches is now more commonly attributed to others in his office, especially Nicholas Hawksmoor. Other notable buildings by Wren include the Royal Hospital Chelsea, the Old Royal Naval College, Greenwich, and the south front of Hampton Court Palace. Educated in Latin and Aristotelian physics at the University of Oxford, Wren was a founder of the Royal Society and served as its president from 1680 to 1682. His scientific work was highly regarded by Isaac Newton and Blaise Pascal.

↑ Return to Menu

Aristotelian physics in the context of Condemnations of 1210–1277

The Condemnations at the medieval University of Paris were enacted to restrict certain teachings as being heretical. These included a number of medieval theological teachings, but most importantly the physical treatises of Aristotle. The investigations of these teachings were conducted by the Bishops of Paris. The Condemnations of 1277 are traditionally linked to an investigation requested by Pope John XXI, although whether he actually supported drawing up a list of condemnations is unclear.

Approximately sixteen lists of censured theses were issued by the University of Paris during the 13th and 14th centuries. Most of these lists of propositions were put together into systematic collections of prohibited articles. Of these, the Condemnations of 1277 are considered particularly important by those historians who consider that they encouraged scholars to question the tenets of Aristotelian science. From this perspective, some historians maintain that the condemnations had positive effects on the development of science, perhaps even representing the beginnings of modern science.

↑ Return to Menu