Analog electronics in the context of Continuous function


Analog electronics in the context of Continuous function

Analog electronics Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Analog electronics in the context of "Continuous function"


⭐ Core Definition: Analog electronics

Analogue electronics (American English: analog electronics) are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term analogue describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the Greek word ανάλογος analogos meaning proportional.

↓ Menu
HINT:

In this Dossier

Analog electronics in the context of Digital electronics

Digital electronics is a field of electronics involving the study of digital signals and the engineering of devices that use or produce them. It deals with the relationship between binary inputs and outputs by passing electrical signals through logical gates, resistors, capacitors, amplifiers, and other electronic components. The field of digital electronics is in contrast to analog electronics, which work primarily with analog signals (signals with varying degrees of intensity as opposed to on/off two-state binary signals). Despite the name, digital electronics designs include important analog design considerations.

Large assemblies of logic gates, used to represent more complex ideas, are often packaged into integrated circuits. Complex devices may have simple electronic representations of Boolean logic functions.

View the full Wikipedia page for Digital electronics
↑ Return to Menu

Analog electronics in the context of Passivity (engineering)

Passivity is a property of engineering systems, most commonly encountered in analog electronics and control systems. Typically, analog designers use passivity to refer to incrementally passive components and systems, which are incapable of power gain. In contrast, control systems engineers will use passivity to refer to thermodynamically passive ones, which consume, but do not produce, energy. As such, without context or a qualifier, the term passive is ambiguous.

An electronic circuit consisting entirely of passive components is called a passive circuit, and has the same properties as a passive component.

View the full Wikipedia page for Passivity (engineering)
↑ Return to Menu

Analog electronics in the context of Noise reduction

Noise reduction is the process of removing noise from a signal. Noise reduction techniques exist for audio and images. Noise reduction algorithms may distort the signal to some degree. Noise rejection is the ability of a circuit to isolate an undesired signal component from the desired signal component, as with common-mode rejection ratio.

All signal processing devices, both analog and digital, have traits that make them susceptible to noise. Noise can be random with an even frequency distribution (white noise), or frequency-dependent noise introduced by a device's mechanism or signal processing algorithms.

View the full Wikipedia page for Noise reduction
↑ Return to Menu

Analog electronics in the context of Electronic engineering

Electronic engineering is a sub-discipline of electrical engineering that emerged in the early 20th century and is distinguished by the additional use of active components such as semiconductor devices to amplify and control electric current flow. Previously electrical engineering only used passive devices such as mechanical switches, resistors, inductors, and capacitors.

It covers fields such as analog electronics, digital electronics, consumer electronics, embedded systems and power electronics. It is also involved in many related fields, for example solid-state physics, radio engineering, telecommunications, control systems, signal processing, systems engineering, computer engineering, instrumentation engineering, electric power control, photonics and robotics.

View the full Wikipedia page for Electronic engineering
↑ Return to Menu

Analog electronics in the context of Rise time

In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratios or, equivalently, as percentages with respect to a given reference value. In analog electronics and digital electronics, these percentages are commonly the 10% and 90% (or equivalently 0.1 and 0.9) of the output step height: however, other values are commonly used. For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones.

Similarly, fall time (pulse decay time) is the time taken for the amplitude of a pulse to decrease (fall) from a specified value (usually 90% of the peak value exclusive of overshoot or undershoot) to another specified value (usually 10% of the maximum value exclusive of overshoot or undershoot). Limits on undershoot and oscillation (also known as ringing and hunting) are sometimes additionally stated when specifying fall time limits.

View the full Wikipedia page for Rise time
↑ Return to Menu

Analog electronics in the context of Integrated circuit design

Integrated circuit design, semiconductor design, chip design or IC design, is a sub-field of electronics engineering, encompassing the particular logic and circuit design techniques required to design integrated circuits (ICs). An IC consists of miniaturized electronic components built into an electrical network on a monolithic semiconductor substrate by photolithography.

IC design can be divided into the broad categories of digital and analog IC design. Digital IC design is to produce components such as microprocessors, FPGAs, memories (RAM, ROM, and flash) and digital ASICs. Digital design focuses on logical correctness, maximizing circuit density, and placing circuits so that clock and timing signals are routed efficiently. Analog IC design also has specializations in power IC design and RF IC design. Analog IC design is used in the design of op-amps, linear regulators, phase locked loops, oscillators and active filters. Analog design is more concerned with the physics of the semiconductor devices such as gain, matching, power dissipation, and resistance. Fidelity of analog signal amplification and filtering is usually critical, and as a result analog ICs use larger area active devices than digital designs and are usually less dense in circuitry.

View the full Wikipedia page for Integrated circuit design
↑ Return to Menu

Analog electronics in the context of Sound chips

A sound chip is an integrated circuit (chip) designed to produce audio signals through digital, analog or mixed-mode electronics. Sound chips are typically fabricated on metal–oxide–semiconductor (MOS) mixed-signal chips that process audio signals (analog and digital signals, for both analog and digital data). They normally contain audio components such as oscillators, envelope controllers, samplers, filters, amplifiers, and envelope generators.

View the full Wikipedia page for Sound chips
↑ Return to Menu