Amyloid beta in the context of Intravital microscopy


Amyloid beta in the context of Intravital microscopy

Amyloid beta Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Amyloid beta in the context of "Intravital microscopy"


⭐ Core Definition: Amyloid beta

Amyloid beta (, Abeta or beta-amyloid) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid-beta precursor protein (APP), which is cleaved by beta secretase and gamma secretase to yield Aβ in a cholesterol-dependent process and substrate presentation. Both neurons and oligodendrocytes produce and release Aβ in the brain, contributing to formation of amyloid plaques. Aβ molecules can aggregate to form flexible soluble oligomers which may exist in several forms. It is now believed that certain misfolded oligomers (known as "seeds") can induce other Aβ molecules to also take the misfolded oligomeric form, leading to a chain reaction akin to a prion infection. The oligomers are toxic to nerve cells. The other protein implicated in Alzheimer's disease, tau protein, also forms such prion-like misfolded oligomers, and there is some evidence that misfolded Aβ can induce tau to misfold.

A study has suggested that APP and its amyloid potential is of ancient origins, dating as far back as early deuterostomes.

↓ Menu
HINT:

👉 Amyloid beta in the context of Intravital microscopy

Intravital microscopy is a form of microscopy that allows observing biological processes in live animals (in vivo) at a high resolution that makes distinguishing between individual cells of a tissue possible.

In mammals, in some experimental settings a surgical implantation of an imaging window is performed prior to intravital microscopy. This allows repeated observations over several days or weeks. For example, if researchers want to visualize liver cells of a live mouse they will implant an imaging window into mouse's abdomen.Mice are the most common choice of animals for intravital microscopy but in special cases other rodents such as rats might be more suitable. Animals are usually anesthetized throughout surgeries and imaging sessions.Intravital microscopy is used in several areas of research including neurology, immunology, stem cell studies and others. This technique is particularly useful to assess a progression of a disease or an effect of a drug.

↓ Explore More Topics
In this Dossier

Amyloid beta in the context of Amyloid plaques

Amyloid plaques (also known as neuritic plaques, amyloid beta plaques or senile plaques) are extracellular deposits of amyloid beta (Aβ) protein that present mainly in the grey matter of the brain. Degenerative neuronal elements and an abundance of microglia and astrocytes can be associated with amyloid plaques. Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease.

The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve, with an average plaque area of 400–450 square micrometers (μm). The smallest plaques (less than 200 μm), which often consist of diffuse deposits of Aβ, are particularly numerous. Plaques form when Aβ misfolds and aggregates into oligomers and longer polymers, the latter of which are characteristic of amyloid.

View the full Wikipedia page for Amyloid plaques
↑ Return to Menu

Amyloid beta in the context of Angiotensin-converting enzyme

Angiotensin-converting enzyme (EC 3.4.15.1), or ACE, is a central component of the renin–angiotensin system (RAS), which controls blood pressure by regulating the volume of fluids in the body. It converts the hormone angiotensin I to the active vasoconstrictor angiotensin II. Therefore, ACE indirectly increases blood pressure by causing blood vessels to constrict. ACE inhibitors are widely used as pharmaceutical drugs for treatment of cardiovascular diseases.

Other lesser known functions of ACE are degradation of bradykinin, substance P and amyloid beta-protein.

View the full Wikipedia page for Angiotensin-converting enzyme
↑ Return to Menu