Aluminium in the context of Yield point


Aluminium in the context of Yield point

Aluminium Study page number 1 of 11

Play TriviaQuestions Online!

or

Skip to study material about Aluminium in the context of "Yield point"


⭐ Core Definition: Aluminium

Aluminium (the Commonwealth and preferred IUPAC name) or aluminum (North American English) is a chemical element; it has symbol Al and atomic number 13. It has a density lower than other common metals, about one-third that of steel. Aluminium has a great affinity towards oxygen, forming a protective layer of oxide on the surface when exposed to air. It visually resembles silver, both in its color and in its great ability to reflect light. It is soft, nonmagnetic, and ductile. It has one stable isotope, Al, which is highly abundant, making aluminium the 12th-most abundant element in the universe. The radioactivity of Al leads to it being used in radiometric dating.

Chemically, aluminium is a post-transition metal in the boron group; as is common for the group, aluminium forms compounds primarily in the +3 oxidation state. The aluminium cation Al is small and highly charged; as such, it has more polarizing power, and bonds formed by aluminium have a more covalent character. The strong affinity of aluminium for oxygen leads to the common occurrence of its oxides in nature. Aluminium is found on Earth primarily in rocks in the crust, where it is the third-most abundant element after oxygen and silicon, rather than in the mantle, and virtually never as the free metal. It is obtained industrially by mining bauxite, a sedimentary rock rich in aluminium minerals.

↓ Menu
HINT:

In this Dossier

Aluminium in the context of Clay

Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, Al2Si2O5(OH)4). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impurities, such as a reddish or brownish colour from small amounts of iron oxide.

Clays develop plasticity when wet but can be hardened through firing. Clay is the longest-known ceramic material. Prehistoric humans discovered the useful properties of clay and used it for making pottery. Some of the earliest pottery shards have been dated to around 14,000 BCE, and clay tablets were the first known writing medium. Clay is used in many modern industrial processes, such as paper making, cement production, and chemical filtering. Between one-half and two-thirds of the world's population live or work in buildings made with clay, often baked into brick, as an essential part of its load-bearing structure. In agriculture, clay content is a major factor in determining land arability. Clay soils are generally less suitable for crops due to poor natural drainage; however, clay soils are more fertile, due to higher cation-exchange capacity.

View the full Wikipedia page for Clay
↑ Return to Menu

Aluminium in the context of Bronze

Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals (such as phosphorus) or metalloids (such as arsenic or silicon). These additions produce a range of alloys some of which are harder than copper alone or have other useful properties, such as strength, ductility, or machinability.

The archaeological period during which bronze was the hardest metal in widespread use is known as the Bronze Age. The beginning of the Bronze Age in western Eurasia is conventionally dated to the mid-4th millennium BCE (~3500 BCE), and to the early 2nd millennium BCE in China; elsewhere it gradually spread across regions. The Bronze Age was followed by the Iron Age, which started about 1300 BCE and reached most of Eurasia by about 500 BCE, although bronze continued to be much more widely used than it is in modern times.

View the full Wikipedia page for Bronze
↑ Return to Menu

Aluminium in the context of Alloy

An alloy is a mixture of chemical elements of which in most cases at least one is a metallic element, although it is also sometimes used for mixtures of elements; herein only metallic alloys are described. Metallic alloys often have properties that differ from those of the pure elements from which they are made. The vast majority of metals used for commercial purposes are alloyed to improve their properties or behavior, such as increased strength, hardness or corrosion resistance. Metals may also be alloyed to reduce their overall cost, for instance alloys of gold and copper.

In an alloy, the atoms are joined by metallic bonding rather than by covalent bonds typically found in chemical compounds. The alloy constituents are usually measured by mass percentage for practical applications, and in atomic fraction for basic science studies. Alloys are usually classified as substitutional or interstitial alloys, depending on the atomic arrangement that forms the alloy. They can be further classified as homogeneous (consisting of a single phase), or heterogeneous (consisting of two or more phases) or intermetallic. An alloy may be a solid solution of metal elements (a single phase, where all metallic grains (crystals) are of the same composition) or a mixture of metallic phases (two or more solutions, forming a microstructure of different crystals within the metal).

View the full Wikipedia page for Alloy
↑ Return to Menu

Aluminium in the context of Integrated Truss Structure

The Integrated Truss Structure (ITS) of the International Space Station (ISS) consists of a linear arranged sequence of connected trusses on which various unpressurized components are mounted such as logistics carriers, radiators, solar arrays, and other equipment. It supplies the ISS with a bus architecture. It is approximately 110 meters long and is made from aluminium and stainless steel.

View the full Wikipedia page for Integrated Truss Structure
↑ Return to Menu

Aluminium in the context of Magnesium

Magnesium is a chemical element; it has symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic table), it occurs naturally only in combination with other elements and almost always has an oxidation state of +2. It reacts readily with air to form a thin passivation coating of magnesium oxide that inhibits further corrosion of the metal. The free metal burns with a brilliant-white light. The metal is obtained mainly by electrolysis of magnesium salts obtained from brine. It is less dense than aluminium and is used primarily as a component in strong and lightweight alloys that contain aluminium.

In the cosmos, magnesium is produced in large, aging stars by the sequential addition of three helium nuclei to a carbon nucleus. When such stars explode as supernovas, much of the magnesium is expelled into the interstellar medium where it may recycle into new star systems. Magnesium is the eighth most abundant element in the Earth's crust and the fourth most common element in the Earth (after iron, oxygen and silicon), making up 13% of the planet's mass and a large fraction of the planet's mantle. It is the third most abundant element dissolved in seawater, after sodium and chlorine.

View the full Wikipedia page for Magnesium
↑ Return to Menu

Aluminium in the context of Calcium

Calcium is a chemical element; it has symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to its heavier homologues strontium and barium. It is the fifth most abundant element in Earth's crust, and the third most abundant metal, after iron and aluminium. The most common calcium compound on Earth is calcium carbonate, found in limestone and the fossils of early sea life; gypsum, anhydrite, fluorite, and apatite are also sources of calcium. The name comes from Latin calx "lime", which was obtained from heating limestone.

Some calcium compounds were known to the ancients, though their chemistry was unknown until the seventeenth century. Pure calcium was isolated in 1808 via electrolysis of its oxide by Humphry Davy, who named the element. Calcium compounds are widely used in many industries: in foods and pharmaceuticals for calcium supplementation, in the paper industry as bleaches, as components in cement and electrical insulators, and in the manufacture of soaps. On the other hand, the metal in pure form has few applications due to its high reactivity; still, in small quantities it is often used as an alloying component in steelmaking, and sometimes, as a calcium–lead alloy, in making automotive batteries.

View the full Wikipedia page for Calcium
↑ Return to Menu

Aluminium in the context of Continental crust

Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as continental shelves. This layer is sometimes called sial because its bulk composition is richer in aluminium silicates (Al-Si) and has a lower density compared to the oceanic crust, called sima which is richer in magnesium silicate (Mg-Si) minerals. Changes in seismic wave velocities have shown that at a certain depth (the Conrad discontinuity), there is a reasonably sharp contrast between the more felsic upper continental crust and the lower continental crust, which is more mafic in character.

Most continental crust is dry land above sea level. However, 94% of the Zealandia continental crust region is submerged beneath the Pacific Ocean, with New Zealand constituting 93% of the above-water portion.

View the full Wikipedia page for Continental crust
↑ Return to Menu

Aluminium in the context of List of tectonic plates

This is a list of tectonic plates on Earth's surface. Tectonic plates are pieces of Earth's crust and uppermost mantle, together referred to as the lithosphere. The plates are around 100 km (62 mi) thick and consist of two principal types of material: oceanic crust (also called sima from silicon and magnesium) and continental crust (sial from silicon and aluminium). The composition of the two types of crust differs markedly, with mafic basaltic rocks dominating oceanic crust, while continental crust consists principally of lower-density felsic granitic rocks.

View the full Wikipedia page for List of tectonic plates
↑ Return to Menu

Aluminium in the context of Troy ounce

Troy weight is a system of units of mass whose origin is uncertain. By far the most common troy unit is the troy ounce (oz t), the standard mass unit for precious metals in industry and in trade; it equals 31.1034768 grams. The troy weight units are the grain, the pennyweight (24 grains), the troy ounce (20 pennyweights), and the troy pound (12 troy ounces). The troy grain is equal to the grain unit of the avoirdupois and apothecaries' systems, but the troy ounce is heavier than the avoirdupois ounce, and the troy pound is lighter than the avoirdupois pound.

View the full Wikipedia page for Troy ounce
↑ Return to Menu

Aluminium in the context of Vase

A vase (/vs/, /vz/, or /vɑːz/) is an open container. It can be made from a number of materials, such as ceramics, glass, non-rusting metals, such as aluminium, brass, bronze, or stainless steel. Even wood has been used to make vases, either by using tree species that naturally resist rot, such as teak, or by applying a protective coating to conventional wood or plastic. Vases are often decorated, and they are often used to hold cut flowers. Vases come in different sizes to support whatever flower is being held or kept in place.

Vases generally share a similar shape. The foot or the base may be bulbous, flat, carinate, or another shape. The body forms the main portion of the piece. Some vases have a shoulder, where the body curves inward, a neck, which gives height, and a lip, where the vase flares back out at the top. Some vases are also given handles.

View the full Wikipedia page for Vase
↑ Return to Menu

Aluminium in the context of Mallet

A mallet is a tool used for imparting force on another object, often made of rubber or sometimes wood, that is smaller than a maul or beetle, and usually has a relatively large head.

View the full Wikipedia page for Mallet
↑ Return to Menu

Aluminium in the context of Refractory

In materials science, a refractory (or refractory material) is a material that is resistant to decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

Refractories are defined by ASTM C71 as "non-metallic materials having those chemical and physical properties that make them applicable for structures, or as components of systems, that are exposed to environments above 1,000 °F (811 K; 538 °C)". Refractory materials are used in furnaces, kilns, incinerators, and reactors. Refractories are also used to make crucibles and molds for casting glass and metals. The iron and steel industry and metal casting sectors use approximately 70% of all refractories produced.

View the full Wikipedia page for Refractory
↑ Return to Menu

Aluminium in the context of Clay mineral

Clay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2Si2O5(OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces.

Clay minerals form in the presence of water and have been important to life, and many theories of abiogenesis involve them. They are important constituents of soils, and have been useful to humans since ancient times in agriculture and manufacturing.

View the full Wikipedia page for Clay mineral
↑ Return to Menu

Aluminium in the context of Kaolinite

Kaolinite (/ˈk.ələˌnt, -lɪ-/ KAY-ə-lə-nyte, -⁠lih-; also called kaolin) is a clay mineral, with the chemical composition Al2Si2O5(OH)4. It is a layered silicate mineral, with one "tetrahedral" sheet of silicate tetrahedra (SiO4) linked to one "octahedral" sheet of aluminate octahedrons (AlO2(OH)4) through oxygen atoms on one side, and another such sheet through hydrogen bonds on the other side.

Kaolinite is a soft, earthy, usually white, mineral (dioctahedral phyllosilicate clay), produced by the chemical weathering of aluminium silicate minerals like feldspar. It has a low shrink–swell capacity and a low cation-exchange capacity (1–15 meq/100 g).

View the full Wikipedia page for Kaolinite
↑ Return to Menu

Aluminium in the context of Injection moulding

Injection moulding (U.S. spelling: Injection molding) is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals (for which the process is called die-casting), glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed (using a helical screw), and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker (or toolmaker) from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers that do not melt during the injection moulding of some lower-temperature thermoplastics, can be used for some simple injection moulds.

Injection moulding uses a special-purpose machine that has three parts: the injection unit, the mould and the clamp. Parts to be injection-moulded must be very carefully designed to facilitate the moulding process; the material used for the part, the desired shape and features of the part, the material of the mould, and the properties of the moulding machine must all be taken into account. The versatility of injection moulding is facilitated by this breadth of design considerations and possibilities.

View the full Wikipedia page for Injection moulding
↑ Return to Menu

Aluminium in the context of Metal leaf

A metal leaf, also called composition leaf or schlagmetal, is a thin foil used for gilding and other forms of decoration. Metal leaves can come in many different shades, due to the composition of the metal within the metal leaf. Examples of this variation of shades in metal leaves can be found in Ancient Egyptian gold leaves, as the silver content within the gold leaves could make them appear bright yellow or paler shades of yellow. Some metal leaves may look like gold leaf but do not contain any real gold. This type of metal leaf is often referred to as imitation leaf.

Metal leaves are usually made of gold (including many alloys), silver, copper, aluminium, brass (sometimes called "Dutch metal" typically 85% copper and 15% zinc) or palladium, as well as platinum.

View the full Wikipedia page for Metal leaf
↑ Return to Menu

Aluminium in the context of Ground (etching)

A ground is waxy material applied to the surface of a metal etching plate. A metal etching plate is a piece of sheet metal, usually copper, zinc, steel, or aluminium. The ground resists the acid or mordant which is used for etching, protecting areas of the metal plate. Grounds are made from a variety of materials including tar, asphaltum, paint (including spray paint), oil pastels, and other materials manufactured specifically for etching.

Most commonly, a ground is applied evenly over the surface of the metal sheet (also known as the etching plate), and then removed using scratching and other mark making techniques to reveal bare metal underneath. In the traditional technique this is done with a metal needle. However, different grounds enable the artist to create different types of marks. Some types of grounds, such as an aquatint ground, are more complex and may not include a removal process because they are applied in a selective manner.

View the full Wikipedia page for Ground (etching)
↑ Return to Menu

Aluminium in the context of Line spacing

In typography, leading (/ˈlɛdɪŋ/ LED-ing) is the space between adjacent lines of type; the exact definition varies.

In hand typesetting, leading is the thin strips of lead (or aluminium) that were inserted between lines of type in the composing stick to increase the vertical distance between them. The thickness of the strip is called leading and is equal to the difference between the size of the type and the distance from one baseline to the next. For instance, given a type size of 10 points and a distance between baselines of 12 points, the leading would be 2 points. This combination of type size and distance between baselines is described as "10 on 12 pt", which may appear in a book's colophon as "Typeset in 10 on 12 pt Times Roman", or similar.

View the full Wikipedia page for Line spacing
↑ Return to Menu

Aluminium in the context of Substrate (marine biology)

Substrate is the earthy material that forms or collects at the bottom of an aquatic habitat. It is made of sediments that may consist of:

  • Silt – A loose, granular material with mineral particles 0.5 mm or less in diameter.
  • Clay – A smooth, fine-grained material made of fine particles of hydrous aluminium phyllosilicate minerals (such as kaolinite).
  • Mud – A mixture of water with silt, clay, or loam.
  • Sand – Mineral particles between 0.06 and 2 mm in diameter.
  • Granule – Between 2 and 4 mm in diameter.
  • Pebble – Between 4 – 64 mm in diameter.
  • Cobble – between 6.4 and 25.6 cm in diameter
  • Boulder – more than 25.6 cm in diameter.
  • Other, assorted organic matter, detritus.

Stream substrate can affect the life found within the stream habitat. Muddy streams generally have more sediment in the water, reducing clarity. Clarity is one guide to stream health.

View the full Wikipedia page for Substrate (marine biology)
↑ Return to Menu