Alpha compositing in the context of "WebP"

Play Trivia Questions online!

or

Skip to study material about Alpha compositing in the context of "WebP"




⭐ Core Definition: Alpha compositing

In computer graphics, alpha compositing or alpha blending is the process of combining one image with a background to create the appearance of partial or full transparency. It is often useful to render picture elements (pixels) in separate passes or layers and then combine the resulting 2D images into a single, final image called the composite. Compositing is used extensively in film when combining computer-rendered image elements with live footage. Alpha blending is also used in 2D computer graphics to put rasterized foreground elements over a background.

In order to combine the picture elements of the images correctly, it is necessary to keep an associated matte for each element in addition to its color. This matte layer contains the coverage information—the shape of the geometry being drawn—making it possible to distinguish between parts of the image where something was drawn and parts that are empty.

↓ Menu

👉 Alpha compositing in the context of WebP

WebP (/ˈwɛpi/ WEP-ee) is a raster graphics file format developed by Google and intended as a replacement for the JPEG, PNG, and GIF file formats on the web. It supports image compression (both lossy and lossless), as well as animation and alpha compositing. The sister project for video is called WebM.

Google announced the WebP format in September 2010; the company released the first stable version of its supporting library in April 2018. WebP has seen widespread adoption across the Internet in order to reduce image size, with all major browsers currently supporting the format.

↓ Explore More Topics
In this Dossier

Alpha compositing in the context of PNG

Portable Network Graphics (PNG, officially pronounced /pɪŋ/ PING, colloquially pronounced /ˌpɛnˈ/ PEE-en-JEE) is a raster-graphics file format that supports lossless data compression. PNG was developed as an improved, non-patented replacement for Graphics Interchange Format (GIF).

PNG supports palette-based images (with palettes of 24-bit RGB or 32-bit RGBA colors), grayscale images (with or without an alpha channel for transparency), and full-color non-palette-based RGB or RGBA images. The PNG working group designed the format for transferring images on the Internet, not for professional-quality print graphics; therefore, non-RGB color spaces such as CMYK are not supported. A PNG file contains a single image in an extensible structure of chunks, encoding the basic pixels and other information such as textual comments and integrity checks documented in RFC 2083.

↑ Return to Menu

Alpha compositing in the context of Photoshop

Adobe Photoshop is a raster graphics editor developed and published by Adobe for Windows and macOS. It was created in 1987 by Thomas and John Knoll. It is the most used tool for professional digital art, especially in raster graphics editing, and its name has become genericised as a verb (e.g., to "photoshop" an image, "photoshopping", and "photoshop contest") although Adobe disapproves of such use.

Photoshop can edit and compose raster images in multiple layers and supports masks, alpha compositing and several color models. Photoshop uses its own PSD and PSB file formats to support these features. In addition to raster graphics, Photoshop has limited abilities to edit or render text and vector graphics (especially through clipping path for the latter), as well as 3D graphics and video. Its feature set can be expanded by plug-ins; programs developed and distributed independently of Photoshop that run inside it and offer new or enhanced features.

↑ Return to Menu

Alpha compositing in the context of RGBA color space

RGBA stands for red green blue alpha. While it is sometimes described as a color space, it is actually a three-channel RGB color model supplemented with a fourth alpha channel. Alpha indicates how opaque each pixel is and allows an image to be combined over others using alpha compositing, with transparent areas and anti-aliasing of the edges of opaque regions. Each pixel is a 4D vector.

The term does not define what RGB color space is being used. It also does not state whether or not the colors are premultiplied by the alpha value, and if they are it does not state what color space that premultiplication was done in. This means more information than just "RGBA" is needed to determine how to handle an image.

↑ Return to Menu

Alpha compositing in the context of Direct3D

Direct3D is a graphics application programming interface (API) for Microsoft Windows. Part of DirectX, Direct3D is used to render three-dimensional graphics in applications where performance is important, such as games. Direct3D uses hardware acceleration if available on the graphics card, allowing for hardware acceleration of the entire 3D rendering pipeline or even only partial acceleration. Direct3D exposes the advanced graphics capabilities of 3D graphics hardware, including Z-buffering, W-buffering, stencil buffering, spatial anti-aliasing, alpha blending, color blending, mipmapping, texture blending, clipping, culling, atmospheric effects, perspective-correct texture mapping, programmable HLSL shaders and effects. Integration with other DirectX technologies enables Direct3D to deliver such features as video mapping, hardware 3D rendering in 2D overlay planes, and even sprites, providing the use of 2D and 3D graphics in interactive media ties.

Direct3D contains many commands for 3D computer graphics rendering; however, since version 8, Direct3D has superseded the DirectDraw framework and also taken responsibility for the rendering of 2D graphics. Microsoft strives to continually update Direct3D to support the latest technology available on 3D graphics cards. Direct3D offers full vertex software emulation but no pixel software emulation for features not available in hardware. For example, if software programmed using Direct3D requires pixel shaders and the video card on the user's computer does not support that feature, Direct3D will not emulate it, although it will compute and render the polygons and textures of the 3D models, albeit at a usually degraded quality and performance compared to the hardware equivalent. The API does include a Reference Rasterizer (or REF device), which emulates a generic graphics card in software, although it is too slow for most real-time 3D applications and is typically only used for debugging. A new real-time software rasterizer, WARP, designed to emulate the complete feature set of Direct3D 10.1, is included with Windows 7 and Windows Vista Service Pack 2 with the Platform Update; its performance is said to be on par with lower-end 3D cards on multi-core CPUs.

↑ Return to Menu