Allotropy in the context of "Allotropes of arsenic"

Play Trivia Questions online!

or

Skip to study material about Allotropy in the context of "Allotropes of arsenic"

Ad spacer

⭐ Core Definition: Allotropy

Allotropy or allotropism (from Ancient Greek ἄλλος (allos) 'other' and τρόπος (tropos) 'manner, form') is the property of some chemical elements to exist in two or more different forms, in the same physical state, known as allotropes of the elements. Allotropes are different structural modifications of an element: the atoms of the element are bonded together in different manners.For example, the allotropes of carbon include diamond (the carbon atoms are bonded together to form a cubic lattice of tetrahedra), graphite (the carbon atoms are bonded together in sheets of a hexagonal lattice), graphene (single sheets of graphite), and fullerenes (the carbon atoms are bonded together in spherical, tubular, or ellipsoidal formations).

The term allotropy is used for elements only, not for compounds. The more general term, used for any compound, is polymorphism, although its use is usually restricted to solid materials such as crystals. Allotropy refers only to different forms of an element within the same physical phase (the state of matter, i.e. plasmas, gases, liquids, or solids). The differences between these states of matter would not alone constitute examples of allotropy. Allotropes of chemical elements are frequently referred to as polymorphs or as phases of the element.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Allotropy in the context of Allotropes of arsenic

Arsenic in the solid state can be found as gray, black, or yellow allotropes. These various forms feature diverse structural motifs, with yellow arsenic enabling the widest range of reactivity. In particular, reaction of yellow arsenic with main group and transition metal elements results in compounds with wide-ranging structural motifs, with butterfly, sandwich and realgar-type moieties featuring most prominently.

↓ Explore More Topics
In this Dossier

Allotropy in the context of Dioxygen

There are several known allotropes of oxygen. The most familiar is molecular oxygen (O2), present at significant levels in Earth's atmosphere and also known as dioxygen or triplet oxygen. Another is the highly reactive ozone (O3). Others are:

↑ Return to Menu

Allotropy in the context of Allotropes of carbon

Carbon is capable of forming many allotropes (structurally different forms of the same element) due to its valency (tetravalent). Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).

↑ Return to Menu

Allotropy in the context of Tetraoxygen

The tetraoxygen molecule (O4), also called oxozone, is an allotrope of oxygen consisting of four oxygen atoms.

↑ Return to Menu

Allotropy in the context of White phosphorus munitions

White phosphorus munitions are weapons that use one of the common allotropes of the chemical element phosphorus. White phosphorus is used in smoke, illumination, and incendiary munitions, and is commonly the burning element of tracer ammunition. Other common names for white phosphorus munitions include WP and the slang terms Willie Pete and Willie Peter, which are derived from William Peter, the World War II phonetic alphabet rendering of the letters WP. White phosphorus is pyrophoric (it is ignited by contact with air); burns fiercely; and can ignite cloth, fuel, ammunition, and other combustibles.

White phosphorus is a highly efficient smoke-producing agent, reacting with air to produce an immediate blanket of phosphorus pentoxide vapour. Smoke-producing white phosphorus munitions are very common, particularly as smoke grenades for infantry, loaded in defensive grenade launchers on tanks and other armoured vehicles, and in the ammunition allotment for artillery and mortars. These create smoke screens to mask friendly forces' movement, position, infrared signatures, and shooting positions. They are often called smoke/marker rounds for their use in marking points of interest, such as a light mortar to designate a target for artillery spotters.

↑ Return to Menu

Allotropy in the context of Allotropes of iron

At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe, similar to alpha iron). At very high pressure, a fourth form exists, epsilon iron (ε-Fe, hexaferrum). Some controversial experimental evidence suggests the existence of a fifth high-pressure form that is stable at very high pressures and temperatures.

The phases of iron at atmospheric pressure are important because of the differences in solubility of carbon, forming different types of steel. The high-pressure phases of iron are important as models for the solid parts of planetary cores. The inner core of the Earth is generally assumed to consist essentially of a crystalline iron-nickel alloy with ε structure. The outer core surrounding the solid inner core is believed to be composed of liquid iron mixed with nickel and trace amounts of lighter elements.

↑ Return to Menu