Alkene in the context of Hydration reaction


Alkene in the context of Hydration reaction

Alkene Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Alkene in the context of "Hydration reaction"


⭐ Core Definition: Alkene

In organic chemistry, an alkene, or olefin, is a hydrocarbon containing a carbon–carbon double bond. The double bond may be internal or at the terminal position. Terminal alkenes are also known as α-olefins.

The International Union of Pure and Applied Chemistry (IUPAC) recommends using the name "alkene" only for acyclic hydrocarbons with just one double bond; alkadiene, alkatriene, etc., or polyene for acyclic hydrocarbons with two or more double bonds; cycloalkene, cycloalkadiene, etc. for cyclic ones; and "olefin" for the general class – cyclic or acyclic, with one or more double bonds.

↓ Menu
HINT:

In this Dossier

Alkene in the context of Petrochemical

Petrochemicals (sometimes abbreviated as petchems) are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

The two most common petrochemical classes are olefins (including ethylene and propylene) and aromatics (including benzene, toluene and xylene isomers).

View the full Wikipedia page for Petrochemical
↑ Return to Menu

Alkene in the context of Double bond

In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist between two different elements: for example, in a carbonyl group between a carbon atom and an oxygen atom. Other common double bonds are found in azo compounds (N=N), imines (C=N), and sulfoxides (S=O). In a skeletal formula, a double bond is drawn as two parallel lines (=) between the two connected atoms; typographically, the equals sign is used for this. Double bonds were introduced in chemical notation by Russian chemist Alexander Butlerov.

Double bonds involving carbon are stronger and shorter than single bonds. The bond order is two. Double bonds are also electron-rich, which makes them potentially more reactive in the presence of a strong electron acceptor (as in addition reactions of the halogens).

View the full Wikipedia page for Double bond
↑ Return to Menu

Alkene in the context of Ethylene

Ethylene (IUPAC name: ethene) is a hydrocarbon which has the formula C2H4 or H2C=CH2. It is a colourless, flammable gas with a faint "sweet and musky" odour when pure. It is the simplest alkene (a hydrocarbon with carbon–carbon double bonds).

Ethylene is widely used in the chemical industry, and its worldwide production (over 225 million tonnes in 2022) exceeds that of any other organic compound. Much of this production goes toward creating polyethylene, which is a widely used plastic containing polymer chains of ethylene units in various chain lengths. Production emits greenhouse gases, including methane from feedstock production and carbon dioxide from any non-sustainable energy used.

View the full Wikipedia page for Ethylene
↑ Return to Menu

Alkene in the context of Propene

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

Propylene is a product of combustion from forest fires, cigarette smoke, and motor vehicle and aircraft exhaust. It was discovered in 1850 by A. W. von Hoffmann's student Captain (later Major General) John Williams Reynolds as the only gaseous product of thermal decomposition of amyl alcohol to react with chlorine and bromine.

View the full Wikipedia page for Propene
↑ Return to Menu

Alkene in the context of Cracking (chemistry)

In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon–carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking long-chain hydrocarbons into short ones. This process requires high temperatures.

More loosely, outside the field of petroleum chemistry, the term "cracking" is used to describe any type of splitting of molecules under the influence of heat, catalysts and solvents, such as in processes of destructive distillation or pyrolysis.

View the full Wikipedia page for Cracking (chemistry)
↑ Return to Menu

Alkene in the context of Ozonide

Ozonide is the polyatomic anion O3. Cyclic organic compounds formed by the addition of ozone (O3) to an alkene are also called ozonides.

View the full Wikipedia page for Ozonide
↑ Return to Menu

Alkene in the context of Organic redox reaction

Organic reductions or organic oxidations or organic redox reactions are redox reactions that take place with organic compounds. In organic chemistry oxidations and reductions are different from ordinary redox reactions, because many reactions carry the name but do not actually involve electron transfer. Instead the relevant criterion for organic oxidation is gain of oxygen and/or loss of hydrogen. Simple functional groups can be arranged in order of increasing oxidation state. The oxidation numbers are only an approximation:

When methane is oxidized to carbon dioxide its oxidation number changes from −4 to +4. Classical reductions include alkene reduction to alkanes and classical oxidations include oxidation of alcohols to aldehydes. In oxidations electrons are removed and the electron density of a molecule is reduced. In reductions electron density increases when electrons are added to the molecule. This terminology is always centered on the organic compound. For example, it is usual to refer to the reduction of a ketone by lithium aluminium hydride, but not to the oxidation of lithium aluminium hydride by a ketone. Many oxidations involve removal of hydrogen atoms from the organic molecule, and reduction adds hydrogens to an organic molecule.

View the full Wikipedia page for Organic redox reaction
↑ Return to Menu

Alkene in the context of Homologous series

In organic chemistry, a homologous series is a sequence of compounds with the same functional group and similar chemical properties in which the members of the series differ by the number of repeating units they contain. This can be the length of a carbon chain, for example in the straight-chained alkanes (paraffins), or it could be the number of monomers in a homopolymer such as amylose. A homologue (also spelled as homolog) is a compound belonging to a homologous series.

Compounds within a homologous series typically have a fixed set of functional groups that gives them similar chemical and physical properties. (For example, the series of primary straight-chained alcohols has a hydroxyl at the end of the carbon chain.) These properties typically change gradually along the series, and the changes can often be explained by mere differences in molecular size and mass. The name "homologous series" is also often used for any collection of compounds that have similar structures or include the same functional group, such as the general alkanes (straight and branched), the alkenes (olefins), the carbohydrates, etc. However, if the members cannot be arranged in a linear order by a single parameter, the collection may be better called a "chemical family" or "class of homologous compounds" than a "series".

View the full Wikipedia page for Homologous series
↑ Return to Menu

Alkene in the context of Unsaturated fat

An unsaturated fat is a fat or fatty acid in which there is at least one double bond within the fatty acid chain, which makes the fatty acid chain, which is basically a chain of hydrocarbons, an alkene. A fatty acid chain is monounsaturated if it contains one double bond, and polyunsaturated if it contains more than one double bond.

A saturated fat has no carbon-to-carbon double bonds, so the maximum possible number of hydrogen is bonded to carbon, and thus, is considered to be "saturated" with hydrogen atoms. To form carbon-to-carbon double bonds, hydrogen atoms are removed from the carbon chain. In cellular metabolism, unsaturated fat molecules contain less energy (i.e., fewer calories) than an equivalent amount of saturated fat. The greater the degree of unsaturation in a fatty acid (i.e., the more double bonds in the fatty acid) the more susceptible it becomes to lipid peroxidation (rancidity). Antioxidants can protect unsaturated fat from lipid peroxidation.

View the full Wikipedia page for Unsaturated fat
↑ Return to Menu

Alkene in the context of Carbon–hydrogen bond

In chemistry, the carbon–hydrogen bond (C−H bond) is a chemical bond between carbon and hydrogen atoms that can be found in many organic compounds. This bond is a covalent, single bond, meaning that carbon shares its outer valence electrons with up to four hydrogens. This completes both of their outer shells, making them stable.

Carbon–hydrogen bonds have a bond length of about 1.09 Å (1.09 × 10 m) and a bond energy of about 413 kJ/mol (see table below). Using Pauling's scale—C (2.55) and H (2.2)—the electronegativity difference between these two atoms is 0.35. Because of this small difference in electronegativities, the C−H bond is generally regarded as being non-polar. In structural formulas of molecules, the hydrogen atoms are often omitted. Compound classes consisting solely of C−H bonds and C−C bonds are alkanes, alkenes, alkynes, and aromatic hydrocarbons. Collectively they are known as hydrocarbons.

View the full Wikipedia page for Carbon–hydrogen bond
↑ Return to Menu

Alkene in the context of Carbon–carbon bond

A carbon–carbon bond is a covalent bond between two carbon atoms. The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms. In ethane, the orbitals are sp-hybridized orbitals, but single bonds formed between carbon atoms with other hybridizations do occur (e.g. sp to sp). In fact, the carbon atoms in the single bond need not be of the same hybridization. Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes. A double bond is formed with an sp-hybridized orbital and a p-orbital that is not involved in the hybridization. A triple bond is formed with an sp-hybridized orbital and two p-orbitals from each atom. The use of the p-orbitals forms a pi bond.

View the full Wikipedia page for Carbon–carbon bond
↑ Return to Menu

Alkene in the context of Cutan (polymer)

Cutan is one of two waxy biopolymers which occur in the cuticle of some plants. The other and better-known polymer is cutin. Cutan is believed to be a hydrocarbon polymer, whereas cutin is a polyester, but the structure and synthesis of cutan are not yet fully understood. Cutan is not present in as many plants as once thought; for instance it is absent in Ginkgo.

Cutan was first detected as a non-saponifiable component, resistant to de-esterification by alkaline hydrolysis, that increases in amount in cuticles of some species such as Clivia miniata as they reach maturity, apparently replacing the cutin secreted in the early stages of cuticle development. Evidence that cutan is a hydrocarbon polymer comes from the fact that its flash pyrolysis products are a characteristic homologous series of paired alkanes and alkenes, and through C-NMR analysis of present-day and fossil plants.

View the full Wikipedia page for Cutan (polymer)
↑ Return to Menu

Alkene in the context of Open-chain compound

In chemistry, an open-chain compound (or open chain compound) or acyclic compound (Greek prefix α 'without' and κύκλος 'cycle') is a compound with a linear structure, rather than a cyclic one.An open-chain compound having no side groups is called a straight-chain compound (also spelled as straight chain compound). Many of the simple molecules of organic chemistry, such as the alkanes and alkenes, have both linear and ring isomers, that is, both acyclic and cyclic. For those with 4 or more carbons, the linear forms can have straight-chain or branched-chain isomers. The lowercase prefix n- denotes the straight-chain isomer; for example, n-butane is straight-chain butane, whereas i-butane is isobutane. Cycloalkanes are isomers of alkenes, not of alkanes, because the ring's closure involves a C-C bond. Having no rings (aromatic or otherwise), all open-chain compounds are aliphatic.

Typically in biochemistry, some isomers are more prevalent than others. For example, in living organisms, the open-chain isomer of glucose usually exists only transiently, in small amounts; D-glucose is the usual isomer; and L-glucose is rare.

View the full Wikipedia page for Open-chain compound
↑ Return to Menu

Alkene in the context of Butylene

Butene, also known as butylene, is an alkene with the formula C4H8. The word butene may refer to any of the individual compounds. They are colourless gases that are present in crude oil as a minor constituent in quantities that are too small for viable extraction. Butene is therefore obtained by catalytic cracking of long-chain hydrocarbons left during refining of crude oil. Cracking produces a mixture of products, and the butene is extracted from this mixture by fractional distillation.

Butene can be used as the monomer for polybutene, but this polymer is more expensive than alternatives with shorter carbon chains such as polypropylene. Polybutene is therefore used in more specialized applications. Butenes are more commonly used to make copolymer (mixed with another monomer such as ethylene).

View the full Wikipedia page for Butylene
↑ Return to Menu

Alkene in the context of Isobutylene

Isobutylene (or 2-methylpropene) is a hydrocarbon with the chemical formula (CH3)2C=CH2. It is a four-carbon branched alkene (olefin), one of the four isomers of butylene. It is a colorless flammable gas, and is of considerable industrial value.

View the full Wikipedia page for Isobutylene
↑ Return to Menu

Alkene in the context of Hydrogenation

Hydrogenation is a chemical reaction between molecular hydrogen (H2) and another compound or element, usually in the presence of a catalyst such as nickel, palladium or platinum. The process is commonly employed to reduce or saturate organic compounds. Hydrogenation typically constitutes the addition of pairs of hydrogen atoms to a molecule, often an alkene. Catalysts are required for the reaction to be usable; non-catalytic hydrogenation takes place only at very high temperatures. Hydrogenation reduces double and triple bonds in hydrocarbons.

View the full Wikipedia page for Hydrogenation
↑ Return to Menu