Aerenchyma in the context of "Aquatic vegetation"

Play Trivia Questions online!

or

Skip to study material about Aerenchyma in the context of "Aquatic vegetation"

Ad spacer

⭐ Core Definition: Aerenchyma

Aerenchyma or aeriferous parenchyma or lacunae is a modification of the parenchyma to form a spongy tissue that creates spaces or air channels in the leaves, stems, and roots of some plants, which allows the exchange of gases between the shoot and the root. The channels of air-filled cavities (see image to right) provide a low-resistance internal pathway for the exchange of gases such as oxygen, carbon dioxide, and ethylene between the plant above the water and the submerged tissues. Aerenchyma is also widespread in aquatic and wetland plants which must grow in hypoxic soils.

The word "aerenchyma" is Modern Latin derived from Latin aer for "air" and Greek enkhyma for "infusion."

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Aerenchyma in the context of Aquatic plant

Aquatic plants, also referred to as hydrophytes, are vascular plants and non-vascular plants that have adapted to live in aquatic environments (saltwater or freshwater). In lakes, rivers and wetlands, aquatic vegetations provide cover for aquatic animals such as fish, amphibians and aquatic insects, create substrate for benthic invertebrates, produce oxygen via photosynthesis, and serve as food for some herbivorous wildlife. Familiar examples of aquatic plants include waterlily, lotus, duckweeds, mosquito fern, floating heart, water milfoils, mare's tail, water lettuce, water hyacinth, and algae.

Aquatic plants require special adaptations for prolonged inundation in water, and for floating at the water surface. The most common adaptation is the presence of lightweight internal packing cells, aerenchyma, but floating leaves and finely dissected leaves are also common. Aquatic plants only thrive in water or in soil that is frequently saturated, and are therefore a common component of swamps and marshlands.

↑ Return to Menu

Aerenchyma in the context of Duckweed

Lemnoideae is a subfamily of flowering aquatic plants, known as duckweeds, water lentils, or water lenses. They float on or just beneath the surface of still or slow-moving bodies of fresh water and wetlands. Also known as bayroot, they arose from within the arum or aroid family (Araceae), so often are classified as the subfamily Lemnoideae within the family Araceae. Other classifications, particularly those created prior to the end of the twentieth century, place them as a separate family, Lemnaceae.

These plants have a simple structure, lacking an obvious stem or leaves. The greater part of each plant is a small organized "thallus" or "frond" structure only a few cells thick, often with air pockets (aerenchyma) that allow it to float on or just under the water surface. Depending on the species, each plant may have no root or may have one or more simple rootlets.

↑ Return to Menu

Aerenchyma in the context of Ground tissue

The ground tissue of plants includes all tissues that are neither dermal nor vascular. It can be divided into three types based on the nature of the cell walls. This tissue system is present between the dermal tissue and forms the main bulk of the plant body.

  1. Parenchyma cells have thin primary walls and usually remain alive after they become mature. Parenchyma forms the "filler" tissue in the soft parts of plants, and is usually present in cortex, pericycle, pith, and medullary rays in primary stem and root.
  2. Collenchyma cells have thin primary walls with some areas of secondary thickening. Collenchyma provides extra mechanical and structural support, particularly in regions of new growth.
  3. Sclerenchyma cells have thick lignified secondary walls and often die when mature. Sclerenchyma provides the main structural support to the plant.
  4. Aerenchyma cells are found in aquatic plants. They are also known to be parenchyma cells with large air cavities surrounded by irregular cells which form columns called trabeculae.
↑ Return to Menu

Aerenchyma in the context of Waterlogging (agriculture)

Waterlogging water is the saturation of soil with water. Soil may be regarded as waterlogged when it is nearly saturated with water much of the time such that its air phase is restricted and anaerobic conditions prevail. In extreme cases of prolonged waterlogging, anaerobiosis occurs, the roots of mesophytes suffer, and the subsurface reducing atmosphere leads to such processes as denitrification, methanogenesis, and the reduction of iron and manganese oxides.

All plants, including crop, require air (specifically, oxygen) to respire, produce energy, and keep their cells alive. In agriculture, waterlogging typically blocks air from getting to the roots. With the exception of rice (Oryza sativa), most crops like maize and potato, are therefore highly intolerant to waterlogging. Plant cells use a variety of signals such the oxygen concentration, plant hormones like ethylene, energy and sugar status to acclimate to waterlogging-induced oxygen deprivation. Roots can survive waterlogging by forming aerenchyma, inducing anaerobic metabolism, and changing root system architecture.

↑ Return to Menu