Adrenal gland in the context of "Cortex (anatomy)"

Play Trivia Questions online!

or

Skip to study material about Adrenal gland in the context of "Cortex (anatomy)"

Ad spacer

⭐ Core Definition: Adrenal gland

The adrenal glands (also known as suprarenal glands) are endocrine glands that produce a variety of hormones including adrenaline and the steroids aldosterone and cortisol. They are found above the kidneys. Each gland has an outer cortex which produces steroid hormones and an inner medulla. The adrenal cortex itself is divided into three main zones: the zona glomerulosa, the zona fasciculata and the zona reticularis.

The adrenal cortex produces three main types of steroid hormones: mineralocorticoids, glucocorticoids, and androgens. Mineralocorticoids (such as aldosterone) produced in the zona glomerulosa help in the regulation of blood pressure and electrolyte balance. The glucocorticoids cortisol and cortisone are synthesized in the zona fasciculata; their functions include the regulation of metabolism and immune system suppression. The innermost layer of the cortex, the zona reticularis, produces androgens that are converted to fully functional sex hormones in the gonads and other target organs. The production of steroid hormones is called steroidogenesis, and involves a number of reactions and processes that take place in cortical cells. The medulla produces the catecholamines, which function to produce a rapid response throughout the body in stress situations.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Adrenal gland in the context of Cortex (anatomy)

In anatomy and zoology, the cortex (pl.: cortices) is the outermost, otherwise known as superficial, layer of an organ. Organs with well-defined cortical layers include kidneys, adrenal glands, ovaries, the thymus, and portions of the brain, including the cerebral cortex, the best-known of all cortices.

↓ Explore More Topics
In this Dossier

Adrenal gland in the context of Endocrine gland

The endocrine system is a network of glands and organs located throughout the body. Along with the nervous system, it makes the neuroendocrine system, which controls and regulates many of the body's functions. Endocrine glands are ductless glands of the endocrine system that secrete their products, hormones, directly into the blood. The major glands of the endocrine system include the pineal gland, pituitary gland, pancreas, ovaries, testicles, thyroid gland, parathyroid gland, hypothalamus and adrenal glands. The hypothalamus and pituitary glands are neuroendocrine organs.

↑ Return to Menu

Adrenal gland in the context of Endocrine system

The endocrine system is a messenger system in an organism comprising feedback loops of hormones that are released by internal glands directly into the circulatory system and that target and regulate distant organs. In vertebrates, the hypothalamus is the neural control center for all endocrine systems.

In humans, the major endocrine glands are the thyroid, parathyroid, pituitary, pineal, and adrenal glands, and the (male) testis and (female) ovaries. The hypothalamus, pancreas, and thymus also function as endocrine glands, among other functions. (The hypothalamus and pituitary glands are organs of the neuroendocrine system. One of the most important functions of the hypothalamus—it is located in the brain adjacent to the pituitary gland—is to link the endocrine system to the nervous system via the pituitary gland.) Other organs, such as the kidneys, also have roles within the endocrine system by secreting certain hormones. The study of the endocrine system and its disorders is known as endocrinology.The thyroid secretes thyroxine, the pituitary secretes growth hormone, the pineal secretes melatonin, the testis secretes testosterone, and the ovaries secrete estrogen and progesterone.

↑ Return to Menu

Adrenal gland in the context of Amniote

Amniotes are tetrapod vertebrate animals belonging to the clade Amniota, a large group that comprises the vast majority of living terrestrial and semiaquatic vertebrates. Amniotes evolved from amphibious stem tetrapod ancestors during the Carboniferous period. Amniota is defined as the smallest crown clade (the group including all descendants of the last common ancestor) containing humans, the Greek tortoise, and the Nile crocodile.Amniotes represent a crucial evolutionary step in vertebrate history, marking the transition from aquatic to fully terrestrial life.

Amniotes are distinguished from the other living tetrapod clade — the non-amniote lissamphibians (frogs/toads, salamanders/newts and caecilians) — by: the development of three extraembryonic membranes (amnion for embryonic protection, chorion for gas exchange, and allantois for metabolic waste disposal or storage); internal fertilization; thicker and keratinized skin; costal respiration (breathing by expanding/constricting the rib cage); the presence of adrenocortical and chromaffin tissues as a discrete pair of glands near their kidneys; more complex kidneys; the presence of an astragalus for better extremity range of motion; the diminished role of skin breathing; and the complete loss of metamorphosis, gills, and lateral lines.

↑ Return to Menu

Adrenal gland in the context of Cushing's syndrome

Cushing's syndrome is a collection of signs and symptoms due to prolonged exposure to glucocorticoids such as cortisol. Signs and symptoms may include high blood pressure, abdominal obesity but with thin arms and legs, reddish stretch marks, a round red face due to facial plethora, a fat lump between the shoulders, weak muscles, weak bones, acne, and fragile skin that heals poorly. Women may have more hair and irregular menstruation or loss of menses, with the exact mechanisms of why still unknown. Occasionally there may be changes in mood, headaches, and a chronic feeling of tiredness.

Cushing's syndrome is caused by either excessive cortisol-like medication, such as prednisone, or a tumor that either produces or results in the production of excessive cortisol by the adrenal glands. Cases due to a pituitary adenoma are known as Cushing's disease, which is the second most common cause of Cushing's syndrome after medication. A number of other tumors, often referred to as ectopic due to their placement outside the pituitary, may also cause Cushing's. Some of these are associated with inherited disorders such as multiple endocrine neoplasia type 1 and Carney complex. Diagnosis requires a number of steps. The first step is to check the medications a person takes. The second step is to measure levels of cortisol in the urine, saliva or in the blood after taking dexamethasone. If this test is abnormal, the cortisol may be measured late at night. If the cortisol remains high, a blood test for ACTH may be done.

↑ Return to Menu

Adrenal gland in the context of Neuroendocrine

Neuroendocrine cells are cells that receive neuronal input (through neurotransmitters released by nerve cells or neurosecretory cells) and, as a consequence of this input, release messenger molecules (hormones) into the blood. In this way they bring about an integration between the nervous system and the endocrine system, a process known as neuroendocrine integration. An example of a neuroendocrine cell is a cell of the adrenal medulla (innermost part of the adrenal gland), which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them from the central nervous system. The adrenal medullary hormones are kept in vesicles much in the same way neurotransmitters are kept in neuronal vesicles. Hormonal effects can last up to ten times longer than those of neurotransmitters. Sympathetic nerve fiber impulses stimulate the release of adrenal medullary hormones. In this way the sympathetic division of the autonomic nervous system and the medullary secretions function together.

The major center of neuroendocrine integration in the body is found in the hypothalamus and the pituitary gland. Here hypothalamic neurosecretory cells release factors to the blood. Some of these factors (releasing hormones), released at the hypothalamic median eminence, control the secretion of pituitary hormones, while others (the hormones oxytocin and vasopressin) are released directly into the blood.

↑ Return to Menu