Active camouflage in the context of "Signalling theory"

Play Trivia Questions online!

or

Skip to study material about Active camouflage in the context of "Signalling theory"

Ad spacer

⭐ Core Definition: Active camouflage

Active camouflage, adaptive camouflage, or chameleonizing is camouflage that adapts, often rapidly, to the surroundings of an object such as an animal or military vehicle. In theory, active camouflage could provide perfect concealment from visual detection.

Active camouflage occurs in several groups of animals, including reptiles on land, and cephalopod molluscs and flatfish in the sea. Animals achieve active camouflage both by color change and (among marine animals such as squid) by counter-illumination, with the use of bioluminescence.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Active camouflage in the context of Camouflage

Camouflage is the use of any combination of materials, coloration, or illumination for concealment, either by making animals or objects hard to see, or by disguising them as something else. Examples include the leopard's spotted coat, the battledress of a modern soldier, and the leaf-mimic katydid's wings. A third approach, motion dazzle, confuses the observer with a conspicuous pattern, making the object visible but momentarily harder to locate. The majority of camouflage methods aim for crypsis, often through a general resemblance to the background, high contrast disruptive coloration, eliminating shadow, and countershading. In the open ocean, where there is no background, the principal methods of camouflage are transparency, silvering, and countershading, while the ability to produce light is among other things used for counter-illumination on the undersides of cephalopods such as squid. Some animals, such as chameleons and octopuses, are capable of actively changing their skin pattern and colours, whether for camouflage or for signalling. It is possible that some plants use camouflage to evade being eaten by herbivores.

Military camouflage was spurred by the increasing range and accuracy of firearms in the 19th century. In particular the replacement of the inaccurate musket with the rifle made personal concealment in battle a survival skill. In the 20th century, military camouflage developed rapidly, especially during the World War I. On land, artists such as André Mare designed camouflage schemes and observation posts disguised as trees. At sea, merchant ships and troop carriers were painted in dazzle patterns that were highly visible, but designed to confuse enemy submarines as to the target's speed, range, and heading. During and after World War II, a variety of camouflage schemes were used for aircraft and for ground vehicles in different theatres of war. The use of radar since the mid-20th century has largely made camouflage for fixed-wing military aircraft obsolete.

↑ Return to Menu

Active camouflage in the context of Counter-illumination

Counter-illumination is a method of active camouflage seen in marine animals such as firefly squid and midshipman fish, and in military prototypes, producing light to match their backgrounds in both brightness and wavelength.

Marine animals of the mesopelagic (mid-water) zone tend to appear dark against the bright water surface when seen from below. They can camouflage themselves, often from predators but also from their prey, by producing light with bioluminescent photophores on their downward-facing surfaces, reducing the contrast of their silhouettes against the background. The light may be produced by the animals themselves, or by symbiotic bacteria, often Aliivibrio fischeri.

↑ Return to Menu

Active camouflage in the context of Diffused lighting camouflage

Diffused lighting camouflage was a form of active camouflage using counter-illumination to enable a ship to match its background, the night sky, that was tested by the Royal Canadian Navy on corvettes during World War II. The principle was discovered by a Canadian professor, Edmund Godfrey Burr, in 1940. It attracted interest because it could help to hide ships from submarines in the Battle of the Atlantic, and the research project began early in 1941. The Royal Navy and the US Navy carried out further equipment development and trials between 1941 and 1943.

The concept behind diffused lighting camouflage was to project light on to the sides of a ship, to make its brightness match its background. Projectors were mounted on temporary supports attached to the hull and the prototype was developed to include automatic control of brightness using a photocell. The concept was never put into production, though the Canadian prototypes did briefly see service. The Canadian ideas were adapted by the US Air Force in its Yehudi lights project.

↑ Return to Menu