Action potentials in the context of Membrane potential


Action potentials in the context of Membrane potential

Action potentials Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Action potentials in the context of "Membrane potential"


⭐ Core Definition: Action potentials

An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. This "depolarization" (physically, a reversal of the polarization of the membrane) then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells. Certain endocrine cells such as pancreatic beta cells, and certain cells of the anterior pituitary gland are also excitable cells.

In neurons, action potentials play a central role in cell–cell communication by providing for—or with regard to saltatory conduction, assisting—the propagation of signals along the neuron's axon toward synaptic boutons situated at the ends of an axon; these signals can then connect with other neurons at synapses, or to motor cells or glands. In other types of cells, their main function is to activate intracellular processes. In muscle cells, for example, an action potential is the first step in the chain of events leading to contraction. In beta cells of the pancreas, they provoke release of insulin. The temporal sequence of action potentials generated by a neuron is called its "spike train". A neuron that emits an action potential, or nerve impulse, is often said to "fire".

↓ Menu
HINT:

In this Dossier

Action potentials in the context of Neuron

A neuron (American English), neurone (British English), or nerve cell, is an excitable cell that fires electric signals called action potentials across a neural network in the nervous system. They are located in the nervous system and help to receive and conduct impulses. Neurons communicate with other cells via synapses, which are specialized connections that commonly use minute amounts of chemical neurotransmitters to pass the electric signal from the presynaptic neuron to the target cell through the synaptic gap.

Neurons are the main components of nervous tissue in all animals except sponges and placozoans. Plants and fungi do not have nerve cells. Molecular evidence suggests that the ability to generate electric signals first appeared in evolution some 700 to 800 million years ago, during the Tonian period. Predecessors of neurons were the peptidergic secretory cells. They eventually gained new gene modules which enabled cells to create post-synaptic scaffolds and ion channels that generate fast electrical signals. The ability to generate electric signals was a key innovation in the evolution of the nervous system.

View the full Wikipedia page for Neuron
↑ Return to Menu

Action potentials in the context of Motor neuron

A motor neuron (or motoneuron), also known as efferent neuron is a neuron that allows for both voluntary and involuntary movements of the body through muscles and glands. Its cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. There are two types of motor neuronupper motor neurons and lower motor neurons. Axons from upper motor neurons synapse onto interneurons in the spinal cord and occasionally directly onto lower motor neurons. The axons from the lower motor neurons are efferent nerve fibers that carry signals from the spinal cord to the effectors. Types of lower motor neurons are alpha motor neurons, beta motor neurons, and gamma motor neurons.

A single motor neuron may innervate many muscle fibres and a muscle fibre can undergo many action potentials in the time taken for a single muscle twitch. Innervation takes place at a neuromuscular junction and twitches can become superimposed as a result of summation or a tetanic contraction. Individual twitches can become indistinguishable, and tension rises smoothly eventually reaching a plateau.

View the full Wikipedia page for Motor neuron
↑ Return to Menu

Action potentials in the context of Neural oscillation

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

Neural oscillations in humans were observed by researchers as early as 1924 (by Hans Berger). More than 50 years later, intrinsic oscillatory behavior was encountered in vertebrate neurons, but its functional role is still not fully understood. The possible roles of neural oscillations include feature binding, information transfer mechanisms and the generation of rhythmic motor output. Over the last decades more insight has been gained, especially with advances in brain imaging. A major area of research in neuroscience involves determining how oscillations are generated and what their roles are. Oscillatory activity in the brain is widely observed at different levels of organization and is thought to play a key role in processing neural information. Numerous experimental studies support a functional role of neural oscillations; a unified interpretation, however, is still lacking.

View the full Wikipedia page for Neural oscillation
↑ Return to Menu

Action potentials in the context of Neural coding

Neural coding (or neural representation) refers to the relationship between a stimulus and its respective neuronal responses, and the signalling relationships among networks of neurons in an ensemble. Action potentials, which act as the primary carrier of information in biological neural networks, are generally uniform regardless of the type of stimulus or the specific type of neuron. The simplicity of action potentials as a methodology of encoding information factored with the indiscriminate process of summation is seen as discontiguous with the specification capacity that neurons demonstrate at the presynaptic terminal, as well as the broad ability for complex neuronal processing and regional specialisation for which the brain-wide integration of such is seen as fundamental to complex derivations; such as intelligence, consciousness, complex social interaction, reasoning and motivation. As such, theoretical frameworks that describe encoding mechanisms of action potential sequences in relationship to observed patterns are seen as fundamental to neuroscientific understanding.

View the full Wikipedia page for Neural coding
↑ Return to Menu

Action potentials in the context of Sarcolemma

The sarcolemma (sarco (from sarx) from Greek; flesh, and lemma from Greek; sheath), also called the myolemma, is the cell membrane surrounding a skeletal muscle fibre or a cardiomyocyte. It consists of a lipid bilayer and a thin outer coat of polysaccharide material (glycocalyx) that contacts the basement membrane. The basement membrane contains numerous thin collagen fibrils and specialized proteins such as laminin that provide a scaffold to which the muscle fibre can adhere. Through transmembrane proteins in the plasma membrane, the actin skeleton inside the cell is connected to the basement membrane and the cell's exterior. At each end of the muscle fibre, the surface layer of the sarcolemma fuses with a tendon fibre, and the tendon fibres, in turn, collect into bundles to form the muscle tendons that adhere to bones.

The sarcolemma generally maintains the same function in muscle cells as the plasma membrane does in other eukaryote cells. It acts as a barrier between the extracellular and intracellular compartments, defining the individual muscle fibre from its surroundings. The lipid nature of the membrane allows it to separate the fluids of the intra- and extracellular compartments, since it is only selectively permeable to water through aquaporin channels. As in other cells, this allows for the compositions of the compartments to be controlled by selective transport through the membrane. Membrane proteins, such as ion pumps, may create ion gradients with the consumption of ATP, that may later be used to drive transport of other substances through the membrane (co-transport) or generate electrical impulses such as action potentials.

View the full Wikipedia page for Sarcolemma
↑ Return to Menu

Action potentials in the context of Postsynaptic potential

Postsynaptic potentials are changes in the membrane potential of the postsynaptic terminal of a chemical synapse. Postsynaptic potentials are graded potentials, and should not be confused with action potentials although their function is to initiate or inhibit action potentials. Postsynaptic potentials occur when the presynaptic neuron releases neurotransmitters into the synaptic cleft. These neurotransmitters bind to receptors on the postsynaptic terminal, which may be a neuron, or a muscle cell in the case of a neuromuscular junction. These are collectively referred to as postsynaptic receptors, since they are located on the membrane of the postsynaptic cell. Postsynaptic potentials are important mechanisms by which neurons communicate with each other allowing for information processing, learning, memory formation, and complex behavior within the nervous system.

View the full Wikipedia page for Postsynaptic potential
↑ Return to Menu

Action potentials in the context of All-or-none law

In physiology, the all-or-none law (sometimes the all-or-none principle or all-or-nothing law) is the principle that if a single nerve fibre is stimulated, it will always give a maximal response and produce an electrical impulse of a single amplitude. If the intensity or duration of the stimulus is increased, the height of the impulse will remain the same. The nerve fibre either gives a maximal response or none at all.

It was first established by the American physiologist Henry Pickering Bowditch in 1871 for the contraction of heart muscle.

View the full Wikipedia page for All-or-none law
↑ Return to Menu

Action potentials in the context of Electrotonic potential

In physiology, electrotonus refers to the passive spread of charge inside a neuron and between cardiac muscle cells or smooth muscle cells. Passive means that voltage-dependent changes in membrane conductance do not contribute. Neurons and other excitable cells produce two types of electrical potential:

  • Electrotonic potential (or graded potential), a non-propagated local potential, resulting from a local change in ionic conductance (e.g. synaptic or sensory that engenders a local current). When it spreads along a stretch of membrane, it becomes exponentially smaller (decrement).
  • Action potential, a propagated impulse.

Electrotonic potentials represent changes to the neuron's membrane potential that do not lead to the generation of new current by action potentials. However, all action potentials are begun by electrotonic potentials depolarizing the membrane above the threshold potential which converts the electrotonic potential into an action potential. Neurons which are small in relation to their length, such as some neurons in the brain, have only electrotonic potentials (starburst amacrine cells in the retina are believed to have these properties); longer neurons utilize electrotonic potentials to trigger the action potential.

View the full Wikipedia page for Electrotonic potential
↑ Return to Menu

Action potentials in the context of Voltage-gated potassium channel

Voltage-gated potassium channels (VGKCs) are transmembrane channels specific for potassium and sensitive to voltage changes in the cell's membrane potential. During action potentials, they play a crucial role in returning the depolarized cell to a resting state.

View the full Wikipedia page for Voltage-gated potassium channel
↑ Return to Menu