Electrotonic potential in the context of Action potentials


Electrotonic potential in the context of Action potentials

Electrotonic potential Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Electrotonic potential in the context of "Action potentials"


⭐ Core Definition: Electrotonic potential

In physiology, electrotonus refers to the passive spread of charge inside a neuron and between cardiac muscle cells or smooth muscle cells. Passive means that voltage-dependent changes in membrane conductance do not contribute. Neurons and other excitable cells produce two types of electrical potential:

  • Electrotonic potential (or graded potential), a non-propagated local potential, resulting from a local change in ionic conductance (e.g. synaptic or sensory that engenders a local current). When it spreads along a stretch of membrane, it becomes exponentially smaller (decrement).
  • Action potential, a propagated impulse.

Electrotonic potentials represent changes to the neuron's membrane potential that do not lead to the generation of new current by action potentials. However, all action potentials are begun by electrotonic potentials depolarizing the membrane above the threshold potential which converts the electrotonic potential into an action potential. Neurons which are small in relation to their length, such as some neurons in the brain, have only electrotonic potentials (starburst amacrine cells in the retina are believed to have these properties); longer neurons utilize electrotonic potentials to trigger the action potential.

↓ Menu
HINT:

In this Dossier

Electrotonic potential in the context of Graded potential

Graded potentials are changes in membrane potential that vary according to the size of the stimulus, as opposed to being all-or-none. They include diverse potentials such as receptor potentials, electrotonic potentials, subthreshold membrane potential oscillations, slow-wave potential, pacemaker potentials, and synaptic potentials. The magnitude of a graded potential is determined by the strength of the stimulus. They arise from the summation of the individual actions of ligand-gated ion channel proteins, and decrease over time and space. They do not typically involve voltage-gated sodium and potassium channels, but rather can be produced by neurotransmitters that are released at synapses which activate ligand-gated ion channels. They occur at the postsynaptic dendrite in response to presynaptic neuron firing and release of neurotransmitter, or may occur in skeletal, smooth, or cardiac muscle in response to nerve input. These impulses are incremental and may be excitatory or inhibitory.

View the full Wikipedia page for Graded potential
↑ Return to Menu