Accommodation (eye) in the context of "Reflex"

Play Trivia Questions online!

or

Skip to study material about Accommodation (eye) in the context of "Reflex"

Ad spacer

⭐ Core Definition: Accommodation (eye)

Accommodation is the process by which the vertebrate eye changes optical power to maintain a clear image or focus on an object as its distance varies. In this, distances vary for individuals from the far point—the maximum distance from the eye for which a clear image of an object can be seen, to the near point—the minimum distance for a clear image.Accommodation usually acts like a reflex, including part of the accommodation-convergence reflex, but it can also be consciously controlled.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Accommodation (eye) in the context of Focus (optics)

In geometrical optics, a focus, also called an image point, is a point where light rays originating from a point on an object converge. Although the focus is conceptually a point, physically the focus has a spatial extent, called the blur circle. This non-ideal focusing may be caused by aberrations of the imaging optics. Even in the absence of aberrations, the smallest possible blur circle is the Airy disc caused by diffraction from the optical system's aperture; diffraction is the ultimate limit to the light focusing ability of any optical system. Aberrations tend to worsen as the aperture diameter increases, while the Airy circle is smallest for large apertures.

An image, or image point or region, is in focus if light from object points is converged almost as much as possible in the image, and out of focus if light is not well converged. The border between these is sometimes defined using a "circle of confusion" criterion.

↑ Return to Menu

Accommodation (eye) in the context of Far-sightedness

Far-sightedness, also known as long-sightedness, hypermetropia, and hyperopia, is a condition of the eye where distant objects are seen clearly but near objects appear blurred. This blur is due to incoming light being focused behind, instead of on, the retina due to insufficient accommodation by the lens. Minor hypermetropia in young patients is usually corrected by their accommodation, without any defects in vision. But, due to this accommodative effort for distant vision, people may complain of eye strain during prolonged reading. If the hypermetropia is high, there will be defective vision for both distance and near. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus. Newborns are almost invariably hypermetropic, but it gradually decreases as the newborn gets older.

There are many causes for this condition. It may occur when the axial length of eyeball is too short or if the lens or cornea is flatter than normal. Changes in refractive index of lens, alterations in position of the lens or absence of lens are the other main causes. Risk factors include a family history of the condition, diabetes, certain medications, and tumors around the eye. It is a type of refractive error. Diagnosis is based on an eye exam.

↑ Return to Menu

Accommodation (eye) in the context of Vergence-accommodation conflict

Vergence-accommodation conflict (VAC), also known as accommodation-vergence conflict, is a visual phenomenon that occurs when the brain receives mismatching cues between vergence and accommodation of the eye. This commonly occurs in virtual reality devices, augmented reality devices, 3D movies, and other types of stereoscopic displays and autostereoscopic displays. The effect can be unpleasant and cause eye strain.

Two main ocular responses can be distinguished: vergence of eyes, and accommodation. Both of these mechanisms are crucial in stereoscopic vision. Vergence or independent inward/outward rotation of eyes is engaged to fixate on objects and perceive them as single. Incorrect vergence response can cause double vision. Accommodation is the eye's focusing mechanism and it is engaged to produce a sharp image on a retina. Both of these mechanisms are neurally linked forming the accommodation-convergence reflex of eyes. One can distinguish vergence distancea distance of a point towards which both eyes are converging, and an accommodation distancea distance of a region in space towards which the focus or refractive power of the crystalline lens has been adjusted to produce a sharp image on the retina.

↑ Return to Menu

Accommodation (eye) in the context of Cornea

The cornea is the transparent front part of the eyeball which covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power. In humans, the refractive power of the cornea is approximately 43 dioptres. The cornea can be reshaped by surgical procedures such as LASIK.

While the cornea contributes most of the eye's focusing power, its focus is fixed. Accommodation (the refocusing of light to better view near objects) is accomplished by changing the geometry of the lens. Medical terms related to the cornea often start with the prefix "kerat-" from the Greek word κέρας, horn.

↑ Return to Menu

Accommodation (eye) in the context of Near point

In visual perception, the near point is the closest point at which an object can be placed and still form a focused image on the retina, within the eye's accommodation range. The other limit to the eye's accommodation range is the far point.

A normal eye is considered to have a near point at about 11 cm (4.3 in) for a thirty year old. The near point is highly age dependent (see accommodation). A person with hyperopia or presbyopia would have a near point that is farther than normal.

↑ Return to Menu

Accommodation (eye) in the context of Accommodation-convergence reflex

The accommodation reflex (or accommodation-convergence reflex) is a reflex action of the eye, in response to focusing on a near object, then looking at a distant object (and vice versa), comprising coordinated changes in vergence, lens shape (accommodation) and pupil size. It is dependent on cranial nerve II (afferent limb of reflex), superior centers (interneuron) and cranial nerve III (efferent limb of reflex). The change in the shape of the lens is controlled by ciliary muscles inside the eye. Changes in contraction of the ciliary muscles alter the focal distance of the eye, causing nearer or farther images to come into focus on the retina; this process is known as accommodation. The reflex, controlled by the parasympathetic nervous system, involves three responses: pupil constriction, lens accommodation, and convergence.

A near object (for example, a computer screen) subtends a large area in the visual field, i.e. the eyes receive light from wide angles. When moving focus from a distant to a near object, the eyes converge. The ciliary muscle constricts making the lens thicker, shortening its focal length. The pupil constricts in order to prevent strongly diverging light rays hitting the periphery of the cornea and the lens from entering the eye and creating a blurred image.

↑ Return to Menu