Access time in the context of "IBM 2361 Large Capacity Storage"

Play Trivia Questions online!

or

Skip to study material about Access time in the context of "IBM 2361 Large Capacity Storage"

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<

👉 Access time in the context of IBM 2361 Large Capacity Storage

The IBM 2361 Large Capacity Storage (LCS) is an optional component of the IBM System/360 models 50, 65 (when not being used as a multiprocessor), and 75 computers. Storage is implemented using magnetic cores; the cycle time is 8 microseconds and the access time is 3.6 microseconds. This component is also called IBM 2361 Core Storage or IBM 2361 Large Core Storage. It provides additional main storage with a slower access time than the standard storage of the machine—for example 8 microseconds compared to 750 nanoseconds for main storage on the Model 65.

The IBM 2361 was also provided to NASA for use on their IBM 7094 real-time system, where it supplied 524,000 36-bit words of additional memory.

↓ Explore More Topics
In this Dossier

Access time in the context of Memory chip

Semiconductor memory is a digital electronic semiconductor device used for digital data storage, such as computer memory. It typically refers to devices in which data is stored within metal–oxide–semiconductor (MOS) memory cells on a silicon integrated circuit memory chip. There are numerous different types using different semiconductor technologies. The two main types of random-access memory (RAM) are static RAM (SRAM), which uses several transistors per memory cell, and dynamic RAM (DRAM), which uses a transistor and a MOS capacitor per cell. Non-volatile memory (such as EPROM, EEPROM and flash memory) uses floating-gate memory cells, which consist of a single floating-gate transistor per cell.

Most types of semiconductor memory have the property of random access, which means that it takes the same amount of time to access any memory location, so data can be efficiently accessed in any random order. This contrasts with data storage media such as CDs which read and write data consecutively and therefore the data can only be accessed in the same sequence it was written. Semiconductor memory also has much faster access times than other types of data storage; a byte of data can be written to or read from semiconductor memory within a few nanoseconds, while access time for rotating storage such as hard disks is in the range of milliseconds. For these reasons it is used for primary storage, to hold the program and data the computer is currently working on, among other uses.

↑ Return to Menu

Access time in the context of Tape drive

A tape drive is a data storage device that reads and writes data on a magnetic tape. Magnetic-tape data storage is typically used for offline, archival data storage. Tape media generally has a favorable unit cost and long archival stability.

A tape drive provides sequential access storage, unlike a hard disk drive, which provides direct access storage. A disk drive can move to any position on the disk in a few milliseconds, but a tape drive must physically wind tape between reels to read any one particular piece of data. As a result, tape drives have very large average access times. However, tape drives can stream data very quickly off a tape when the required position has been reached. For example, as of 2017 Linear Tape-Open (LTO) supports continuous data transfer rates of up to 360 MB/s, a rate comparable to hard disk drives.

↑ Return to Menu