Absolute age in the context of Hesperian


Absolute age in the context of Hesperian

Absolute age Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Absolute age in the context of "Hesperian"


⭐ Core Definition: Absolute age

Absolute dating is the process of determining an age on a specified chronology in archaeology and geology. Some scientists prefer the terms chronometric or calendar dating, as the use of the word "absolute" implies an unwarranted certainty of accuracy. Absolute dating provides a numerical age or range, in contrast with relative dating, which places events in order without any measure of the age between events.

In archaeology, absolute dating is usually based on the physical, chemical, and life properties of the materials of artifacts, buildings, or other items that have been modified by humans and by historical associations with materials with known dates (such as coins and historical records). For example, coins found in excavations may have their production date written on them, or there may be written records describing the coin and when it was used, allowing the site to be associated with a particular calendar year. Absolute dating techniques include radiocarbon dating of wood or bones, potassium-argon dating, and trapped-charge dating methods such as thermoluminescence dating of glazed ceramics.

↓ Menu
HINT:

👉 Absolute age in the context of Hesperian

The Hesperian is a geologic system and time period on the planet Mars characterized by widespread volcanic activity and catastrophic flooding that carved immense outflow channels across the surface. The Hesperian is an intermediate and transitional period of Martian history. During the Hesperian, Mars changed from the wetter and perhaps warmer world of the Noachian to the dry, cold, and dusty planet seen today. The absolute age of the Hesperian Period is uncertain. The beginning of the period followed the end of the Late Heavy Bombardment and probably corresponds to the start of the lunar Late Imbrian period, around 3700 million years ago (Mya). The end of the Hesperian Period is much more uncertain and could range anywhere from 3200 to 2000 Mya, with 3000 Mya being frequently cited. The Hesperian Period is roughly coincident with the Earth's early Archean Eon.

With the decline of heavy impacts at the end of the Noachian, volcanism became the primary geologic process on Mars, producing vast plains of flood basalts and broad volcanic constructs (highland paterae). By Hesperian times, all of the large shield volcanoes on Mars, including Olympus Mons, had begun to form. Volcanic outgassing released large amounts of sulfur dioxide (SO2) and hydrogen sulfide (H2S) into the atmosphere, causing a transition in the style of weathering from dominantly phyllosilicate (clay) to sulfate mineralogy. Liquid water became more localized in extent and turned more acidic as it interacted with SO2 and H2S to form sulfuric acid.

↓ Explore More Topics
In this Dossier

Absolute age in the context of Relative ages

Relative dating is the science of determining the relative order of past events (i.e., the age of an object in comparison to another), without necessarily determining their absolute age (i.e., estimated age). In geology, rock or superficial deposits, fossils and lithologies can be used to correlate one stratigraphic column with another. Prior to the discovery of radiometric dating in the early 20th century, which provided a means of absolute dating, archaeologists and geologists used relative dating to determine ages of materials. Though relative dating can only determine the sequential order in which a series of events occurred, not when they occurred, it remains a useful technique. Relative dating by biostratigraphy is the preferred method in paleontology and is, in some respects, more accurate. The Law of Superposition, which states that older layers will be deeper in a site than more recent layers, was the summary outcome of 'relative dating' as observed in geology from the 17th century to the early 20th century.

View the full Wikipedia page for Relative ages
↑ Return to Menu

Absolute age in the context of Hadean zircon

Hadean zircon is the oldest-surviving crustal material from the Earth's earliest geological time period, the Hadean eon, about 4 billion years ago. Zircon is a mineral that is commonly used for radiometric dating because it is highly resistant to chemical changes and appears in the form of small crystals or grains in most igneous and metamorphic host rocks.

Hadean zircon has very low abundance around the globe because of recycling of material by plate tectonics. When the rock at the surface is buried deep in the Earth it is heated and can recrystallise or melt. In the Jack Hills, Australia, scientists obtained a relatively comprehensive record of Hadean zircon crystals in contrast to other locations. The Jack Hills zircons are found in metamorphosed sediments that were initially deposited around 3 billion years ago, or during the Archean Eon. However, the zircon crystals there are older than the rocks that contain them. Many investigations have been carried out to find the absolute age and properties of zircon, for example the isotope ratios, mineral inclusions, and geochemistry of zircon. The characteristics of Hadean zircons show early Earth history and the mechanism of Earth's processes in the past. Based on the properties of these zircon crystals, many different geological models were proposed.

View the full Wikipedia page for Hadean zircon
↑ Return to Menu

Absolute age in the context of Noachian

The Noachian is a geologic system and early time period on the planet Mars characterized by high rates of meteorite and asteroid impacts and the possible presence of abundant surface water. The absolute age of the Noachian period is uncertain but probably corresponds to the lunar Pre-Nectarian to Early Imbrian periods of 4100 to 3700 million years ago, during the interval known as the Late Heavy Bombardment. Many of the large impact basins on the Moon and Mars formed at this time. The Noachian Period is roughly equivalent to the Earth's Hadean and early Archean eons when Earth's first life forms likely arose.

Noachian-aged terrains on Mars are prime spacecraft landing sites to search for fossil evidence of life. During the Noachian, the atmosphere of Mars was denser than it is today, and the climate possibly warm enough (at least episodically) to allow rainfall. Large lakes and rivers were present in the southern hemisphere, and an ocean may have covered the low-lying northern plains. Extensive volcanism occurred in the Tharsis region, building up enormous masses of volcanic material (the Tharsis bulge) and releasing large quantities of gases into the atmosphere. Weathering of surface rocks produced a diversity of clay minerals (phyllosilicates) that formed under chemical conditions conducive to microbial life.

View the full Wikipedia page for Noachian
↑ Return to Menu