101955 Bennu in the context of Sample-return mission


101955 Bennu in the context of Sample-return mission

101955 Bennu Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about 101955 Bennu in the context of "Sample-return mission"


⭐ Core Definition: 101955 Bennu

101955 Bennu (provisional designation 1999 RQ36) is a carbonaceous asteroid in the Apollo group discovered by the LINEAR Project on 11 September 1999. It is a potentially hazardous object that is listed on the Sentry Risk Table and has the second highest cumulative rating on the Palermo scale. It has a cumulative chance of around 1-in-1,750 of impacting Earth between 2178 and 2290 with the greatest risk being on 24 September 2182. It is named after Bennu, the ancient Egyptian mythological bird associated with the Sun, creation, and rebirth.

101955 Bennu has a mean diameter of 490 m (1,610 ft; 0.30 mi) and has been observed extensively by the Arecibo Observatory planetary radar and the Goldstone Deep Space Network.

↓ Menu
HINT:

👉 101955 Bennu in the context of Sample-return mission

A sample-return mission is a spacecraft mission to collect and return samples from an extraterrestrial location to Earth for analysis. Sample-return missions may bring back merely atoms and molecules or a deposit of complex compounds such as loose material and rocks. These samples may be obtained in a number of ways, such as soil and rock excavation or a collector array used for capturing particles of solar wind or cometary debris. Nonetheless, concerns have been raised that the return of such samples to planet Earth may endanger Earth itself.

To date, samples of Moon rock from Earth's Moon have been collected by robotic and crewed missions; the comet Wild 2 and the asteroids 25143 Itokawa, 162173 Ryugu, and 101955 Bennu have been visited by robotic spacecraft which returned samples to Earth; and samples of the solar wind have been returned by the robotic Genesis mission.

↓ Explore More Topics
In this Dossier

101955 Bennu in the context of Planetary surface

A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets (including Earth), dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land (or ground) is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

In differentiated bodies, the surface is where the crust meets the planetary boundary layer. Anything below this is regarded as being sub-surface or sub-marine. Most bodies more massive than super-Earths, including stars and giant planets, as well as smaller gas dwarfs, transition contiguously between phases, including gas, liquid, and solid. As such, they are generally regarded as lacking surfaces.

View the full Wikipedia page for Planetary surface
↑ Return to Menu

101955 Bennu in the context of OSIRIS-REx

OSIRIS-REx was a NASA asteroid-study and sample-return mission that visited and collected samples from 101955 Bennu, a carbonaceous near-Earth asteroid. The material, returned in September 2023, is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth. Following the completion of the primary OSIRIS-REx (Regolith Explorer) mission, the spacecraft is planned to conduct a flyby of asteroid 99942 Apophis, renamed as OSIRIS-APEX (Apophis Explorer).

OSIRIS-REx was launched on September 8, 2016, flew past Earth on 22 September 2017 and rendezvoused with Bennu on 3 December 2018. It spent the next two years analyzing the surface to find a suitable site from which to extract a sample. On 20 October 2020, OSIRIS-REx touched down on Bennu and successfully collected a sample. OSIRIS-REx left Bennu on 10 May 2021 and returned its sample to Earth on 24 September 2023, subsequently starting its extended mission to study 99942 Apophis, where it will arrive in April 2029.

View the full Wikipedia page for OSIRIS-REx
↑ Return to Menu