Lancelets in the context of "Central nervous system"

⭐ In the context of the central nervous system, lancelets are considered to possess what distinguishing characteristic compared to sponges and diploblasts?

Ad spacer

⭐ Core Definition: Lancelets

The lancelets (/ˈlænslɪt, ˈlɑːn-/ LA(H)N-slit), also known as amphioxi (sg.: amphioxus /ˌæmfiˈɒksəs/ AM-fee-OK-səs), consist of 32 described species of somewhat fish-like benthic filter-feeding chordates in the subphylum Cephalochordata, class Leptocardii, and family Branchiostomatidae.

Lancelets diverged from other chordates during or prior to the Cambrian period. A number of fossil chordates have been suggested to be closely related to lancelets, including Pikaia and Cathaymyrus from the Cambrian and Palaeobranchiostoma from the Permian, but their close relationship to lancelets has been doubted by other authors. Molecular clock analysis suggests that modern lancelets probably diversified much more recently, during the Cretaceous or Cenozoic.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Lancelets in the context of Central nervous system

The central nervous system (CNS) is the part of the nervous system consisting primarily of the brain, spinal cord and retina. The CNS is so named because the brain integrates the received information and coordinates and influences the activity of all parts of the bodies of bilaterally symmetric and triploblastic animals—that is, all multicellular animals except sponges and diploblasts. It is a structure composed of nervous tissue positioned along the rostral (nose end) to caudal (tail end) axis of the body and may have an enlarged section at the rostral end which is a brain. Only arthropods, cephalopods and vertebrates have a true brain, though precursor structures exist in onychophorans, gastropods and lancelets.

The rest of this article exclusively discusses the vertebrate central nervous system, which is radically distinct from all other animals.

↓ Explore More Topics
In this Dossier

Lancelets in the context of Proarticulata

Proarticulata (also known as Dickinsoniomorpha) is a phylum of extinct, near-bilaterally symmetrical animals known from fossils found in the Ediacaran (Vendian) marine deposits, and dates to approximately 567 to 550 million years ago. The name comes from the Greek προ (pro-) = "before" and Articulata, i.e. prior to animals with true segmentation such as annelids and arthropods. This phylum was established by Mikhail A. Fedonkin in 1985 for such animals as Dickinsonia, Vendia, Cephalonega, Praecambridium and currently many other Proarticulata are described (see list).

Due to their simplistic morphology, their affinities and mode of life are subject to debate. They are almost universally considered to be metazoans, and due to possessing a clear central axis have been suggested to be stem-bilaterians. In the traditional interpretation, the Proarticulatan body is divided into transverse articulation (division) into isomers as distinct from the transverse articulation segments in annelids and arthropods, as their individual isomers occupy only half the width of their bodies, and are organized in an alternating pattern along the longitudinal axis of their bodies. In other words, one side is not the direct mirror image of its opposite (chirality). Opposite isomers of left and right side are located with displacement of half of their width. This phenomenon is described as the symmetry of gliding reflection. Some recent research suggests that some proarticulatans like Dickinsonia have genuine segments, and the isomerism is superficial and due to taphonomic distortion. However, other researchers dispute this. Displacement of left-right axis is known in bilaterians, notably lancelets.

↑ Return to Menu