Μ-recursive function in the context of Church–Turing thesis


Μ-recursive function in the context of Church–Turing thesis

Μ-recursive function Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Μ-recursive function in the context of "Church–Turing thesis"


⭐ Core Definition: Μ-recursive function

In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis). The μ-recursive functions are closely related to primitive recursive functions, and their inductive definition (below) builds upon that of the primitive recursive functions. However, not every total recursive function is a primitive recursive function—the most famous example is the Ackermann function.

Other equivalent classes of functions are the functions of lambda calculus and the functions that can be computed by Markov algorithms.

↓ Menu
HINT:

In this Dossier

Μ-recursive function in the context of Computable

Computability is the ability to solve a problem by an effective procedure. It is a key topic of the field of computability theory within mathematical logic and the theory of computation within computer science. The computability of a problem is closely linked to the existence of an algorithm to solve the problem.

The most widely studied models of computability are the Turing-computable and μ-recursive functions, and the lambda calculus, all of which have computationally equivalent power. Other forms of computability are studied as well: computability notions weaker than Turing machines are studied in automata theory, while computability notions stronger than Turing machines are studied in the field of hypercomputation.

View the full Wikipedia page for Computable
↑ Return to Menu