Zorn's lemma in the context of Compact space


Zorn's lemma in the context of Compact space

Zorn's lemma Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Zorn's lemma in the context of "Compact space"


⭐ Core Definition: Zorn's lemma

Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element.

The lemma was proven (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935. It occurs in the proofs of several theorems of crucial importance, for instance the Hahn–Banach theorem in functional analysis, the theorem that every vector space has a basis, Tychonoff's theorem in topology stating that every product of compact spaces is compact, and the theorems in abstract algebra that in a ring with identity every proper ideal is contained in a maximal ideal and that every field has an algebraic closure.

↓ Menu
HINT:

In this Dossier

Zorn's lemma in the context of Reverse mathematics

Reverse mathematics is a program in mathematical logic that seeks to determine which axioms are required to prove theorems of mathematics. Its defining method can briefly be described as "going backwards from the theorems to the axioms", in contrast to the ordinary mathematical practice of deriving theorems from axioms. It can be conceptualized as sculpting out necessary conditions from sufficient ones.

The reverse mathematics program was foreshadowed by results in set theory such as the classical theorem that the axiom of choice and Zorn's lemma are equivalent over ZF set theory. The goal of reverse mathematics, however, is to study possible axioms of ordinary theorems of mathematics rather than possible axioms for set theory.

View the full Wikipedia page for Reverse mathematics
↑ Return to Menu

Zorn's lemma in the context of Well-ordering theorem

In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem. One can conclude from the well-ordering theorem that every set is susceptible to transfinite induction, which is considered by mathematicians to be a powerful technique. One famous consequence of the theorem is the Banach–Tarski paradox.

View the full Wikipedia page for Well-ordering theorem
↑ Return to Menu

Zorn's lemma in the context of Max August Zorn

Max August Zorn (German: [tsɔʁn]; June 6, 1906 – March 9, 1993) was a German mathematician. He was an algebraist, group theorist, and numerical analyst. He is best known for Zorn's lemma, a method used in set theory that is applicable to a wide range of mathematical constructs such as vector spaces, and ordered sets amongst others. Zorn's lemma was first postulated by Kazimierz Kuratowski in 1922, and then independently by Zorn in 1935.

View the full Wikipedia page for Max August Zorn
↑ Return to Menu

Zorn's lemma in the context of Algebraic closure

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

Using Zorn's lemma or the weaker ultrafilter lemma, it can be shown that every field has an algebraic closure, and that the algebraic closure of a field K is unique up to an isomorphism that fixes every member of K. Because of this essential uniqueness, we often speak of the algebraic closure of K, rather than an algebraic closure of K.

View the full Wikipedia page for Algebraic closure
↑ Return to Menu