ZFC in the context of Axiom of choice


ZFC in the context of Axiom of choice

ZFC Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about ZFC in the context of "Axiom of choice"


⭐ Core Definition: ZFC

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Informally, Zermelo–Fraenkel set theory is intended to formalize a single primitive notion, that of a hereditary well-founded set, so that all entities in the universe of discourse are such sets. Thus the axioms of Zermelo–Fraenkel set theory refer only to pure sets and prevent its models from containing urelements (elements that are not themselves sets). Furthermore, proper classes (collections of mathematical objects defined by a property shared by their members where the collections are too big to be sets) can only be treated indirectly. Specifically, Zermelo–Fraenkel set theory does not allow for the existence of a universal set (a set containing all sets) nor for unrestricted comprehension, thereby avoiding Russell's paradox. Von Neumann–Bernays–Gödel set theory (NBG) is a commonly used conservative extension of Zermelo–Fraenkel set theory that does allow explicit treatment of proper classes.

↓ Menu
HINT:

In this Dossier

ZFC in the context of Power set

In mathematics, the power set (or powerset) of a set S is the set of all subsets of S, including the empty set and S itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is postulated by the axiom of power set. The powerset of S is variously denoted as P(S), 𝒫(S), P(S), , or 2.Any subset of P(S) is called a family of sets over S.

View the full Wikipedia page for Power set
↑ Return to Menu

ZFC in the context of Richard Montague

Richard Merritt Montague (September 20, 1930 – March 7, 1971) was an American mathematician and philosopher who made contributions to mathematical logic and the philosophy of language. He is known for proposing Montague grammar to formalize the semantics of natural language. As a student of Alfred Tarski, he also contributed early developments to axiomatic set theory (ZFC). For the latter half of his life, he was a professor at the University of California, Los Angeles until his early death, believed to be a homicide, at age 40.

View the full Wikipedia page for Richard Montague
↑ Return to Menu

ZFC in the context of Axiom of replacement

In set theory, the axiom schema of replacement is a schema of axioms in Zermelo–Fraenkel set theory (ZF) that asserts that the image of any set under any definable mapping is also a set. It is necessary for the construction of certain infinite sets in ZF.

The axiom schema is motivated by the idea that whether a class is a set depends only on the cardinality of the class, not on the rank of its elements. Thus, if one class is "small enough" to be a set, and there is a surjection from that class to a second class, the axiom states that the second class is also a set. However, because ZFC only speaks of sets, not proper classes, the schema is stated only for definable surjections, which are identified with their defining formulas.

View the full Wikipedia page for Axiom of replacement
↑ Return to Menu