X-ray fluorescence in the context of X-ray machine


X-ray fluorescence in the context of X-ray machine

X-ray fluorescence Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about X-ray fluorescence in the context of "X-ray machine"


⭐ Core Definition: X-ray fluorescence

X-ray fluorescence (XRF) is the emission of characteristic "secondary" (or fluorescent) X-rays from a material that has been excited by being bombarded with high-energy X-rays or gamma rays. When a material is illuminated with high-energy X-rays, its atoms can become excited and emit their own unique, characteristic X-rays—a process similar to how a blacklight makes certain colors fluoresce. By measuring the energy and intensity of these emitted "secondary" X-rays, scientists can identify which elements are present in the sample and in what quantities. Thus, XRF is the basis of a non-destructive analytical technique widely used for elemental analysis and chemical analysis, particularly in the investigation of metals, glass, ceramics and building materials, and for research in geochemistry, forensic science, archaeology and art objects such as paintings.

↓ Menu
HINT:

In this Dossier

X-ray fluorescence in the context of Industrial radiography

Industrial radiography is a modality of non-destructive testing that uses ionizing radiation to inspect materials and components with the objective of locating and quantifying defects and degradation in material properties that would lead to the failure of engineering structures. It plays an important role in the science and technology needed to ensure product quality and reliability. In Australia, industrial radiographic non-destructive testing is colloquially referred to as "bombing" a component with a "bomb".

Industrial Radiography uses either X-rays, produced with X-ray generators, or gamma rays generated by the natural radioactivity of sealed radionuclide sources. Neutrons can also be used. After crossing the specimen, photons are captured by a detector, such as a silver halide film, a phosphor plate, flat panel detector or CdTe detector. The examination can be performed in static 2D (named radiography), in real time 2D (fluoroscopy), or in 3D after image reconstruction (computed tomography or CT). It is also possible to perform tomography nearly in real time (4-dimensional computed tomography or 4DCT). Particular techniques such as X-ray fluorescence (XRF), X-ray diffractometry (XRD), and several other ones complete the range of tools that can be used in industrial radiography.

View the full Wikipedia page for Industrial radiography
↑ Return to Menu

X-ray fluorescence in the context of X-ray generator

An X-ray machine is a device that uses X-rays for a variety of applications including medicine, X-ray fluorescence, electronic assembly inspection, and measurement of material thickness in manufacturing operations. In medical applications, X-ray machines are used by radiographers to acquire x-ray images of the internal structures (e.g., bones) of living organisms, and also in sterilization.

View the full Wikipedia page for X-ray generator
↑ Return to Menu

X-ray fluorescence in the context of Petrography

Petrography is a branch of petrology that focuses on detailed descriptions of rocks. Someone who studies petrography is called a petrographer. The mineral content and the textural relationships within the rock are described in detail. The classification of rocks is based on the information acquired during the petrographic analysis. Petrographic descriptions start with the field notes at the outcrop and include macroscopic description of hand-sized specimens. The most important petrographer's tool is the petrographic microscope. The detailed analysis of minerals by optical mineralogy in thin section and the micro-texture and structure are critical to understanding the origin of the rock.

Electron microprobe or atom probe tomography analysis of individual grains as well as whole rock chemical analysis by atomic absorption, X-ray fluorescence, and laser-induced breakdown spectroscopy are used in a modern petrographic lab. Individual mineral grains from a rock sample may also be analyzed by X-ray diffraction when optical means are insufficient. Analysis of microscopic fluid inclusions within mineral grains with a heating stage on a petrographic microscope provides clues to the temperature and pressure conditions existent during the mineral formation.

View the full Wikipedia page for Petrography
↑ Return to Menu

X-ray fluorescence in the context of Fire assay

A metallurgical assay is a compositional analysis of an ore, metal, or alloy, usually performed in order to test for purity or quality.

Some assay methods are suitable for raw materials; others are more appropriate for finished goods. Raw precious metals (bullion) are assayed by an assay office. Silver is assayed by titration, gold by cupellation and platinum by inductively coupled plasma optical emission spectrometry (ICP OES).Precious metal items of art or jewelry are frequently hallmarked (depending upon the requirements of the laws of either the place of manufacture or the place of import). Where required to be hallmarked, semi-finished precious metal items of art or jewelry pass through the official testing channels where they are analyzed or assayed for precious metal content. While different nations permit a variety of legally acceptable finenesses, the assayer is actually testing to determine that the fineness of the product conforms with the statement or claim of fineness that the maker has claimed (usually by stamping a number such as 750 for 18k gold) on the item. In the past the assay was conducted by using the touchstone method but currently (most often) it is done using X-ray fluorescence (XRF). XRF is used because this method is more exacting than the that of a touchstone test. The most exact method of assay is known as fire assay or cupellation. This method is better suited for the assay of bullion and gold stocks rather than works of art or jewelry because it is a completely destructive method.

View the full Wikipedia page for Fire assay
↑ Return to Menu