Wire rope in the context of Winch


Wire rope in the context of Winch

Wire rope Study page number 1 of 3

Play TriviaQuestions Online!

or

Skip to study material about Wire rope in the context of "Winch"


⭐ Core Definition: Wire rope

Wire rope is composed of as few as two solid, metal wires twisted into a helix that forms a composite rope, in a pattern known as laid rope. Larger diameter wire rope consists of multiple strands of such laid rope in a pattern known as cable laid. Manufactured using an industrial machine known as a strander, the wires are fed through a series of barrels and spun into their final composite orientation.

In stricter senses, the term wire rope refers to a diameter larger than 9.5 mm (38 in), with smaller gauges designated cable or cords. Initially wrought iron wires were used, but today steel is the main material used for wire ropes.

↓ Menu
HINT:

In this Dossier

Wire rope in the context of Cable transport

Cable transport is a broad class of transport modes that have cables. They transport passengers and goods, often in vehicles called cable cars. The cable may be driven or passive, and items may be moved by pulling, sliding, sailing, or by drives within the object being moved on cableways. The use of pulleys and balancing of loads moving up and down are common elements of cable transport. They are often used in mountainous areas where cable haulage can overcome large differences in elevation.

View the full Wikipedia page for Cable transport
↑ Return to Menu

Wire rope in the context of Block and tackle

A block and tackle or only tackle is a system of two or more pulleys with a rope or cable threaded between them, used to provide tension and lift heavy loads.

The pulleys are assembled to form blocks and then blocks are paired so that one is fixed and one moves with the load. The rope is threaded through the pulleys to provide mechanical advantage that amplifies the force applied to the rope.

View the full Wikipedia page for Block and tackle
↑ Return to Menu

Wire rope in the context of Ferrule

A ferrule (a corruption of Latin viriola "small bracelet", under the influence of ferrum "iron") is any of a number of types of objects, generally used for fastening, joining, sealing, or reinforcement. They are often narrow circular rings made from metal, or less commonly, plastic. Ferrules are also often referred to as eyelets or grommets within the manufacturing industry.

Most ferrules consist of a circular clamp used to hold together and attach fibers, wires, or posts, generally by crimping, swaging, or otherwise deforming the ferrule to permanently tighten it onto the parts that it holds.

View the full Wikipedia page for Ferrule
↑ Return to Menu

Wire rope in the context of Architectural engineering


Architectural engineering or architecture engineering, also known as building engineering, is a discipline that deals with the engineering and construction of buildings, such as environmental, structural, mechanical, electrical, computational, embeddable, and other research domains. It is related to Architecture, Mechatronics Engineering, Computer Engineering, Aerospace Engineering, and Civil Engineering, but distinguished from Interior Design and Architectural Design as an art and science of designing infrastructure through these various engineering disciplines, from which properly align with many related surrounding engineering advancements.

From reduction of greenhouse gas emissions to the construction of resilient buildings, architectural engineers are at the forefront of addressing several major challenges of the 21st century. They apply the latest scientific knowledge and technologies to the design of buildings. Architectural engineering as a relatively new licensed profession emerged in the 20th century as a result of the rapid technological developments. Architectural engineers are at the forefront of two major historical opportunities that today's world is immersed in: (1) that of rapidly advancing computer-technology, and (2) the parallel revolution of environmental sustainability.

View the full Wikipedia page for Architectural engineering
↑ Return to Menu

Wire rope in the context of Aerial lift

An aerial lift, also known as a cable car or ropeway, is a means of cable transport in which cabins, cars, gondolas, or open chairs are hauled above the ground by means of one or more cables. Aerial lift systems are frequently employed in a mountainous territory where roads are relatively difficult to build and use, and have seen extensive use in mining. Aerial lift systems are relatively easy to move and have been used to cross rivers and ravines. In more recent times, the cost-effectiveness and flexibility of aerial lifts have seen an increase of gondola lift being integrated into urban public transport systems.

View the full Wikipedia page for Aerial lift
↑ Return to Menu

Wire rope in the context of Pulleys

A pulley is a wheel on an axle or shaft enabling a taut cable or belt passing over the wheel to move and change direction, or transfer power between itself and a shaft.

A pulley may have a groove or grooves between flanges around its circumference to locate the cable or belt. The drive element of a pulley system can be a rope, cable, belt, or chain.

View the full Wikipedia page for Pulleys
↑ Return to Menu

Wire rope in the context of Crane (machine)

A crane is a machine used to move materials both vertically and horizontally, utilizing a system of a boom, hoist, wire ropes or chains, and sheaves for lifting and relocating heavy objects within the swing of its boom. The device uses one or more simple machines, such as the lever and pulley, to create mechanical advantage to do its work. Cranes are commonly employed in transportation for the loading and unloading of freight, in construction for the movement of materials, and in manufacturing for the assembling of heavy equipment.

The first known crane machine was the shaduf, a water-lifting device that was invented in ancient Mesopotamia (modern Iraq) and then appeared in ancient Egyptian technology. Construction cranes later appeared in ancient Greece, where they were powered by men or animals (such as donkeys), and used for the construction of buildings. Larger cranes were later developed in the Roman Empire, employing the use of human treadwheels, permitting the lifting of heavier weights. In the High Middle Ages, harbour cranes were introduced to load and unload ships and assist with their construction—some were built into stone towers for extra strength and stability. The earliest cranes were constructed from wood, but cast iron, iron and steel took over with the coming of the Industrial Revolution.

View the full Wikipedia page for Crane (machine)
↑ Return to Menu

Wire rope in the context of Suspension bridge

A suspension bridge is a type of bridge in which the deck is hung below suspension cables on vertical suspenders. The first modern examples of this type of bridge were built in the early 1800s. Simple suspension bridges, which lack vertical suspenders, have a long history in many mountainous parts of the world.

Besides the bridge type most commonly called suspension bridges, covered in this article, there are other types of suspension bridges. The type covered here has cables suspended between towers, with vertical suspender cables that transfer the live and dead loads of the deck below, upon which traffic crosses. This arrangement allows the deck to be level or to arc upward for additional clearance. Like other suspension bridge types, this type often is constructed without the use of falsework.

View the full Wikipedia page for Suspension bridge
↑ Return to Menu

Wire rope in the context of Cable-stayed bridge

A cable-stayed bridge is a type of bridge that has one or more towers (or pylons), from which cables support the bridge deck. A distinctive feature are the cables or stays, which run directly from the tower to the deck, normally forming a fan-like pattern or a series of parallel lines. This is in contrast to the modern suspension bridge, where the cables supporting the deck are suspended vertically from the main cables, which run between the towers and are anchored at both ends of the bridge. The cable-stayed bridge is optimal for spans longer than cantilever bridges and shorter than suspension bridges. This is the range within which cantilever bridges would rapidly grow heavier, and suspension bridge cabling would be more costly.

Cable-stayed bridges found wide use in the late 19th century. Early examples, including the Brooklyn Bridge, often combined features from both the cable-stayed and suspension designs. Cable-stayed designs fell from favor in the early 20th century as larger gaps were bridged using pure suspension designs, and shorter ones using various systems built of reinforced concrete. It returned to prominence in the later 20th century when the combination of new materials, larger construction machinery, and the need to replace older bridges all lowered the relative price of these designs.

View the full Wikipedia page for Cable-stayed bridge
↑ Return to Menu

Wire rope in the context of Wire saw

A wire saw is a saw that uses a metal wire or cable for mechanical cutting of bulk solid material such as stone, wood, glass, ferrites, concrete, metals, crystals etc.. Industrial wire saws are usually powered. There are also hand-powered survivalist wire saws suitable for cutting tree branches. Wire saws are classified as continuous (or endless, or loop) or oscillating (or reciprocating). Sometimes the wire itself is referred to as a "blade".

Wire saws are similar in principle to band saws or reciprocating saws, but they use abrasion to cut rather than saw teeth. Depending on the application, diamond material may or may not be used as an abrasive. The wire can have one strand or many strands braided together (cable). A single-strand saw can be roughened to be abrasive, abrasive compounds can be bonded to the cable, or diamond-impregnated beads (and spacers) can be threaded on the cable. Wire saws are often cooled and lubricated by water or oil.

View the full Wikipedia page for Wire saw
↑ Return to Menu

Wire rope in the context of Guy-wires

A guy-wire, guy-line, guy-rope, down guy, or stay, also called simply a guy, is a tensioned cable designed to add stability to a freestanding structure. They are used commonly for ship masts, radio masts, wind turbines, utility poles, and tents. A thin vertical mast supported by guy wires is called a guyed mast. Structures that support antennas are frequently of a lattice construction and are called "towers". One end of the guy is attached to the structure, and the other is anchored to the ground at some distance from the mast or tower base. The tension in the diagonal guy-wire, combined with the compression and buckling strength of the structure, allows the structure to withstand lateral loads such as wind or the weight of cantilevered structures. They are installed radially, usually at equal angles about the structure, in trios and quads. As the tower leans a bit due to the wind force, the increased guy tension is resolved into a compression force in the tower or mast and a lateral force that resists the wind load. For example, antenna masts are often held up by three guy-wires at 120° angles. Structures with predictable lateral loads, such as electrical utility poles, may require only a single guy-wire to offset the lateral pull of the electrical wires at a spot where the wires change direction.

Conductive guy cables for radio antenna masts can catch and deflect radiation in unintended directions, so their electrical characteristics must be included in the design. Often the guy wire is divided by strain insulators into isolated sections whose lengths are not resonant with the transmission frequencies.

View the full Wikipedia page for Guy-wires
↑ Return to Menu

Wire rope in the context of Wire

A wire is a flexible, round bar of metal. Wires are commonly formed by drawing the metal through a hole in a die or draw plate. Wire gauges come in various standard sizes, as expressed in terms of a gauge number or cross-sectional area.

Wires are used to bear mechanical loads, often in the form of wire rope. In electricity and telecommunications signals, wire can refer to electrical cable, which can contain a solid core of a single wire or separate strands in stranded or braided forms.

View the full Wikipedia page for Wire
↑ Return to Menu

Wire rope in the context of Prestressed concrete

Prestressed concrete is a form of concrete used in construction. It is substantially prestressed (compressed) during production, in a manner that strengthens it against tensile forces which will exist when in service. It was patented by Eugène Freyssinet in 1928.

This compression is produced by the tensioning of high-strength tendons located within or adjacent to the concrete and is done to improve the performance of the concrete in service. Tendons may consist of single wires, multi-wire strands or threaded bars that are most commonly made from high-tensile steels, carbon fiber or aramid fiber. The essence of prestressed concrete is that once the initial compression has been applied, the resulting material has the characteristics of high-strength concrete when subject to any subsequent compression forces and of ductile high-strength steel when subject to tension forces. This can result in improved structural capacity or serviceability, or both, compared with conventionally reinforced concrete in many situations. In a prestressed concrete member, the internal stresses are introduced in a planned manner so that the stresses resulting from the imposed loads are counteracted to the desired degree.

View the full Wikipedia page for Prestressed concrete
↑ Return to Menu

Wire rope in the context of Submarine telegraph cable

A submarine communications cable is a cable laid on the seabed between land-based stations to carry telecommunication signals across stretches of ocean and sea. The first submarine communications cables were laid beginning in the 1850s and carried telegraphy traffic, establishing the first instant telecommunications links between continents, such as the first transatlantic telegraph cable which became operational on 16 August 1858.

Submarine cables first connected all the world's continents (except Antarctica) when Java was connected to Darwin, Northern Territory, Australia, in 1871 in anticipation of the completion of the Australian Overland Telegraph Line in 1872 connecting to Adelaide, South Australia and thence to the rest of Australia.

View the full Wikipedia page for Submarine telegraph cable
↑ Return to Menu

Wire rope in the context of Ratner Athletic Center

The Gerald Ratner Athletics Center (colloquially, the Rat) is a $51 million athletics facility within the University of Chicago campus in the Hyde Park community area on the South Side of Chicago, Illinois in the United States. The building was named after University of Chicago alumnus, Gerald Ratner. The architect of this suspension structure that is supported by masts, cables and counterweights was César Pelli, who is best known as the architect of the Petronas Towers.

The Ratner Athletics Center was approved for use in September 2003. The facility includes, among other things: a competition gymnasium, a multilevel fitness facility, an Olympic-sized swimming pool, a multipurpose dance studio, meeting room space, and athletic department offices. It serves as home to several of the university's athletic teams and has hosted numerous National Collegiate Athletic Association Division III regional and University Athletic Association conference championship events.

View the full Wikipedia page for Ratner Athletic Center
↑ Return to Menu

Wire rope in the context of Skidder

A skidder is any type of heavy vehicle used in a logging operation for pulling cut trees out of a forest in a process called "skidding", in which the logs are transported from the cutting site to a landing. There they are loaded onto trucks (or railroad cars or a flume), and sent to the mill. One exception is that in the early days of logging, when distances from the timberline to the mill were shorter, the landing stage was omitted altogether, and the "skidder" would have been used as the main road vehicle, in place of the trucks, railroad, or flume. Modern forms of skidders can pull trees with a cable and winch (cable skidder), just like the old steam donkeys, or with a hydraulic grapple either on boom (grapple skidder) or on the back of the frame (clambunk skidder).

View the full Wikipedia page for Skidder
↑ Return to Menu