Teller-Ulam design in the context of "Lithium"

⭐ In the context of Lithium, the Teller-Ulam design utilizes a specific property of lithium's atomic structure to achieve its function. What is this key property?

Ad spacer

⭐ Core Definition: Teller-Ulam design

The Teller–Ulam design is the technical concept behind thermonuclear weapons, also known as hydrogen bombs. The design relies on the radiation implosion principle, using thermal X-rays released from a fission nuclear primary to compress and ignite nuclear fusion in a secondary. This is in contrast to the simpler design and usage of nuclear fusion in boosted fission weapons.

The design is named for scientists Edward Teller and Stanisław Ulam, who originally devised the concept in January 1951 for the United States nuclear weapons program, though their individual roles have been subsequently debated. The US Greenhouse George test in May 1951, the world's first artificial thermonuclear fusion, validated the radiation implosion principle. The US first tested the "true" Teller-Ulam design with the very high-yield Ivy Mike test in 1952. The design was independently devised and then tested by teams of nuclear weapons scientists working for at least four more governments: the Soviet Union in 1955 (RDS-37), the United Kingdom in 1957 (Operation Grapple), China in 1966 (Project 639), and France in 1968 (Canopus). There is not enough public information to determine whether India, Israel, or North Korea possess multi-stage weapons. Pakistan is not considered to have developed them. The Teller-Ulam design is the basis for all nuclear weapons tests above one megaton yield.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<

👉 Teller-Ulam design in the context of Lithium

Lithium (from Ancient Greek: λίθος, líthos, 'stone') is a chemical element; it has symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid element. Like all alkali metals, lithium is highly reactive and flammable, and must be stored in vacuum, inert atmosphere, or inert liquid such as purified kerosene or mineral oil. It exhibits a metallic luster when pure, but quickly corrodes in air to a dull silvery gray, then black tarnish. It does not occur freely in nature, but occurs mainly as pegmatitic minerals, which were once the main source of lithium. Due to its solubility as an ion, it is present in ocean water and is commonly obtained from brines. Lithium metal is isolated electrolytically from a mixture of lithium chloride and potassium chloride.

The nucleus of the lithium atom verges on instability, since the two stable lithium isotopes found in nature have among the lowest binding energies per nucleon of all stable nuclides. Because of its relative nuclear instability, lithium is less common in the Solar System than 25 of the first 32 chemical elements even though its nuclei are very light: it is an exception to the trend that heavier nuclei are less common. For related reasons, lithium has important uses in nuclear physics. The transmutation of lithium atoms to helium in 1932 was the first fully human-made nuclear reaction, and lithium deuteride serves as a fusion fuel in staged thermonuclear weapons.

↓ Explore More Topics
In this Dossier