Wilkinson Microwave Anisotropy Probe in the context of "Cosmic neutrino background"

Play Trivia Questions online!

or

Skip to study material about Wilkinson Microwave Anisotropy Probe in the context of "Cosmic neutrino background"

Ad spacer

⭐ Core Definition: Wilkinson Microwave Anisotropy Probe

The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic microwave background (CMB) – the radiant heat remaining from the Big Bang. Headed by Professor Charles L. Bennett of Johns Hopkins University, the mission was developed in a joint partnership between the NASA Goddard Space Flight Center and Princeton University. The WMAP spacecraft was launched on 30 June 2001 from Florida. The WMAP mission succeeded the COBE space mission and was the second medium-class (MIDEX) spacecraft in the NASA Explorer program. In 2003, MAP was renamed WMAP in honor of cosmologist David Todd Wilkinson (1935–2002), who had been a member of the mission's science team. After nine years of operations, WMAP was switched off in 2010, following the launch of the more advanced Planck spacecraft by European Space Agency (ESA) in 2009.

WMAP's measurements played a key role in establishing the current Standard Model of Cosmology: the Lambda-CDM model. The WMAP data are very well fit by a universe that is dominated by dark energy in the form of a cosmological constant. Other cosmological data are also consistent, and together tightly constrain the Model. In the Lambda-CDM model of the universe, the age of the universe is 13.772±0.059 billion years. The WMAP mission's determination of the age of the universe is to better than 1% precision. The current expansion rate of the universe is (see Hubble constant) 69.32±0.80 km·s·Mpc. The content of the universe currently consists of 4.628%±0.093% ordinary baryonic matter; 24.02%+0.88%
−0.87%
cold dark matter (CDM) that neither emits nor absorbs light; and 71.35%+0.95%
−0.96%
of dark energy in the form of a cosmological constant that accelerates the expansion of the universe. Less than 1% of the current content of the universe is in neutrinos, but WMAP's measurements have found, for the first time in 2008, that the data prefer the existence of a cosmic neutrino background with an effective number of neutrino species of 3.26±0.35. The contents point to a Euclidean flat geometry, with curvature () of −0.0027+0.0039
−0.0038
. The WMAP measurements also support the cosmic inflation paradigm in several ways, including the flatness measurement.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Wilkinson Microwave Anisotropy Probe in the context of Anisotropy

Anisotropy (/ˌænˈsɒtrəpi, ˌænɪ-/) is the structural property of non-uniformity in different directions, as opposed to isotropy. An anisotropic object or pattern has properties that differ according to direction of measurement. For example, many materials exhibit very different physical or mechanical properties when measured along different axes, e.g. absorbance, refractive index, conductivity, and tensile strength.

An example of anisotropy is light coming through a polarizer. Another is wood, which is easier to split along its grain than across it because of the directional non-uniformity of the grain (the grain is the same in one direction, not all directions).

↑ Return to Menu

Wilkinson Microwave Anisotropy Probe in the context of Planck (spacecraft)

Planck was a space observatory operated by the European Space Agency (ESA) from 2009 to 2013. The project aimed to map the anisotropies of the cosmic microwave background (CMB) at microwave and infrared frequencies, with high sensitivity and angular resolution. The mission provided data that substantially improved upon previous observations made by the NASA Wilkinson Microwave Anisotropy Probe (WMAP).

The Planck observatory was a major source of information relevant to several cosmological and astrophysical issues. One of its key objectives was to test cosmological theories about the early Universe, its composition and evolution, and the origin of cosmic structure.

↑ Return to Menu

Wilkinson Microwave Anisotropy Probe in the context of Lagrange point

In celestial mechanics, the Lagrange points (/ləˈɡrɑːn/), also called the Lagrangian points or libration points, are points of equilibrium for small-mass objects under the gravitational influence of two massive orbiting bodies. Mathematically, this involves the solution of the restricted three-body problem.

Normally, the two massive bodies exert an unbalanced gravitational force at a point, altering the orbit of whatever is at that point. At the Lagrange points, the gravitational forces of the two large bodies and the centrifugal force balance each other. This can make Lagrange points an excellent location for satellites, as orbit corrections, and hence fuel requirements, needed to maintain the desired orbit are kept at a minimum.

↑ Return to Menu

Wilkinson Microwave Anisotropy Probe in the context of Swift Gamma-Ray Burst Mission

Neil Gehrels Swift Observatory, previously called the Swift Gamma-Ray Burst Explorer, is a NASA three-telescope space observatory for studying gamma-ray bursts (GRBs) and monitoring the afterglow in X-ray, and UV/visible light at the location of a burst. It was launched on 20 November 2004, aboard a Delta II launch vehicle. Headed by principal investigator Neil Gehrels until his death in February 2017, the mission was developed in a joint partnership between Goddard Space Flight Center (GSFC) and an international consortium from the United States, United Kingdom, and Italy. The mission is operated by Pennsylvania State University as part of NASA's Medium Explorer program (MIDEX).

The burst detection rate is 100 per year, with a sensitivity ~3 times fainter than the BATSE detector aboard the Compton Gamma Ray Observatory. The Swift mission was launched with a nominal on-orbit lifetime of two years. Swift is a NASA MIDEX (medium-class Explorer) mission. It was the third to be launched, following IMAGE and WMAP.

↑ Return to Menu

Wilkinson Microwave Anisotropy Probe in the context of Charles L. Bennett

Charles Leonard Bennett (born November 1956) is an American observational astrophysicist. He is a Bloomberg Distinguished Professor, the Alumni Centennial Professor of Physics and Astronomy and a Gilman Scholar at Johns Hopkins University. He is the Principal Investigator of NASA's Wilkinson Microwave Anisotropy Probe (WMAP).

↑ Return to Menu