White dwarf in the context of Triple-alpha process


White dwarf in the context of Triple-alpha process

White dwarf Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about White dwarf in the context of "Triple-alpha process"


⭐ Core Definition: White dwarf

A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: in an Earth-sized volume, it packs a mass that is comparable to the Sun. No nuclear fusion takes place in a white dwarf; what light it radiates is from its residual heat. The nearest known white dwarf is Sirius B, at 8.6 light years, the smaller component of the Sirius binary star. There are currently thought to be eight white dwarfs among the one hundred star systems nearest the Sun. The unusual faintness of white dwarfs was first recognized in 1910. The name white dwarf was coined by Willem Jacob Luyten in 1922.

White dwarfs are thought to be the final evolutionary state of stars whose mass is not high enough to become a neutron star or black hole. This includes over 97% of the stars in the Milky Way. After the hydrogen-fusing period of a main-sequence star of low or intermediate mass ends, such a star will expand to a red giant and fuse helium to carbon and oxygen in its core by the triple-alpha process. If a red giant has insufficient mass to generate the core temperatures required to fuse carbon (around 10 K), an inert mass of carbon and oxygen will build up at its center. After such a star sheds its outer layers and forms a planetary nebula, it will leave behind a core, which is the remnant white dwarf. Usually, white dwarfs are composed of carbon and oxygen (CO white dwarf). If the mass of the progenitor is between 7 and 9 solar masses (M), the core temperature will be sufficient to fuse carbon but not neon, in which case an oxygen–neon–magnesium (ONeMg or ONe) white dwarf may form. Stars of very low mass will be unable to fuse helium; hence, a helium white dwarf may be formed by mass loss in an interacting binary star system.

↓ Menu
HINT:

In this Dossier

White dwarf in the context of Star

A star is a luminous spheroid of plasma held together by self-gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night; their immense distances from Earth make them appear as fixed points of light. The most prominent stars have been categorised into constellations and asterisms, and many of the brightest stars have proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. The observable universe contains an estimated 10 to 10 stars. Only about 4,000 of these stars are visible to the naked eye—all within the Milky Way galaxy.

A star's life begins with the gravitational collapse of a gaseous nebula of material largely comprising hydrogen, helium, and traces of heavier elements. Its total mass mainly determines its evolution and eventual fate. A star shines for most of its active life due to the thermonuclear fusion of hydrogen into helium in its core. This process releases energy that traverses the star's interior and radiates into outer space. At the end of a star's lifetime, fusion ceases and its core becomes a stellar remnant: a white dwarf, a neutron star, or—if it is sufficiently massive—a black hole.

View the full Wikipedia page for Star
↑ Return to Menu

White dwarf in the context of Supernova

A supernova (pl.: supernovae) is a powerful and luminous explosion of a star. A supernova occurs during the last evolutionary stages of a massive star, or when a white dwarf is triggered into runaway nuclear fusion. The original object, called the progenitor, either collapses to a neutron star or black hole, or is completely destroyed to form a diffuse nebula. The peak optical luminosity of a supernova can be comparable to that of an entire galaxy before fading over several weeks or months.

The last supernova directly observed in the Milky Way was Kepler's Supernova in 1604, appearing not long after Tycho's Supernova in 1572, both of which were visible to the naked eye. Observations of recent supernova remnants within the Milky Way, coupled with studies of supernovae in other galaxies, suggest that these powerful stellar explosions occur in our galaxy approximately three times per century on average. A supernova in the Milky Way would almost certainly be observable through modern astronomical telescopes. The most recent naked-eye supernova was SN 1987A, which was the explosion of a blue supergiant star in the Large Magellanic Cloud, a satellite galaxy of the Milky Way in 1987.

View the full Wikipedia page for Supernova
↑ Return to Menu

White dwarf in the context of Type Ia supernova

A Type Ia supernova (read: "type one-A") is a supernova that occurs in binary systems (two stars orbiting one another) in which one of the stars is a white dwarf. The other star can be anything from a giant star to an even smaller white dwarf.

Physically, carbon–oxygen white dwarfs with a low rate of rotation are limited to below 1.44 solar masses (M). Beyond this "critical mass", they reignite and in some cases trigger a supernova explosion; this critical mass is often referred to as the Chandrasekhar mass, but is marginally different from the absolute Chandrasekhar limit, where electron degeneracy pressure is unable to prevent catastrophic collapse. If a white dwarf gradually accretes mass from a binary companion, or merges with a second white dwarf, the general hypothesis is that a white dwarf's core will reach the ignition temperature for carbon fusion as it approaches the Chandrasekhar mass. Within a few seconds of initiation of nuclear fusion, a substantial fraction of the matter in the white dwarf undergoes a runaway reaction, releasing enough energy (1×10 J) to unbind the star in a supernova explosion.

View the full Wikipedia page for Type Ia supernova
↑ Return to Menu

White dwarf in the context of Stellar remnant

In astronomy, the term compact object (or compact star) refers collectively to white dwarfs, neutron stars, and black holes. It could also include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density compared to ordinary atomic matter. The term is used as a generalization for cases where the exact nature of a significant gravitational effect isolated to a small radius is not known.

Since most compact object types represent endpoints of stellar evolution, they are also called stellar remnants, and accordingly may be called dead stars in popular media reports. The state and type of a stellar remnant depends primarily on the mass of its progenitor star. A compact object that is not a black hole may be called a degenerate star.

View the full Wikipedia page for Stellar remnant
↑ Return to Menu

White dwarf in the context of Stellar evolution

Stellar evolution is the process by which a star changes over the course of time. Depending on the mass of the star, its lifetime can range from a few million years for the most massive to trillions of years for the least massive, which is considerably longer than the current age of the universe. The table shows the lifetimes of stars as a function of their masses. All stars are formed from collapsing clouds of gas and dust, often called nebulae or molecular clouds. Over the course of millions of years, these protostars settle down into a state of equilibrium, becoming what is known as a main sequence star.

Nuclear fusion powers a star for most of its existence. Initially the energy is generated by the fusion of hydrogen atoms at the core of the main-sequence star. Later, as the preponderance of atoms at the core becomes helium, stars like the Sun begin to fuse hydrogen along a spherical shell surrounding the core. This process causes the star to gradually grow in size, passing through the subgiant stage until it reaches the red-giant phase. Stars with at least half the mass of the Sun can also begin to generate energy through the fusion of helium at their core, whereas more-massive stars can fuse heavier elements along a series of concentric shells. Once a star like the Sun has exhausted its nuclear fuel, its core collapses into a dense white dwarf and the outer layers are expelled as a planetary nebula. Stars with around ten or more times the mass of the Sun can explode in a supernova as their inert iron cores collapse into an extremely dense neutron star or black hole. Although the universe is not old enough for any of the smallest red dwarfs to have reached the end of their existence, stellar models suggest they will slowly become brighter and hotter before running out of hydrogen fuel and becoming low-mass white dwarfs.

View the full Wikipedia page for Stellar evolution
↑ Return to Menu

White dwarf in the context of List of nearest stars and brown dwarfs

This list covers all known stars, white dwarfs, brown dwarfs, and sub-brown dwarfs/rogue planets within 20 light-years (6.13 parsecs) of the Sun. So far, 131 such objects have been found. Only 22 are bright enough to be visible without a telescope, for which the star's visible light needs to reach or exceed the dimmest brightness visible to the naked eye from Earth, which is typically around 6.5 apparent magnitude.

The known 131 objects are bound in 94 stellar systems. Of those, 103 are main sequence stars: 80 red dwarfs and 23 "typical" stars having greater mass. Additionally, astronomers have found 6 white dwarfs (stars that have exhausted all fusible hydrogen), 21 brown dwarfs, as well as 1 sub-brown dwarf, WISE 0855−0714 (possibly a rogue planet). The closest system is Alpha Centauri, with Proxima Centauri as the closest star in that system, at 4.2465 light-years from Earth. The brightest, most massive and most luminous object among those 131 is Sirius A, which is also the brightest star in Earth's night sky; its white dwarf companion Sirius B is the hottest object among them. The largest object within the 20 light-years is Procyon.

View the full Wikipedia page for List of nearest stars and brown dwarfs
↑ Return to Menu

White dwarf in the context of Neutron star

A neutron star is the gravitationally collapsed core of a massive supergiant star. It results from the supernova explosion of a massive star—combined with gravitational collapse—that compresses the core past white dwarf star density to that of atomic nuclei. Surpassed only by black holes, neutron stars are the second smallest and densest known class of stellar objects. Neutron stars have a radius on the order of 10 kilometers (6 miles) and a mass of about 1.4 solar masses (M). Stars that collapse into neutron stars have a total mass of between 10 and 25 M or possibly more for those that are especially rich in elements heavier than hydrogen and helium.

Once formed, neutron stars no longer actively generate heat and cool over time, but they may still evolve further through collisions or accretion. Most of the basic models for these objects imply that they are composed almost entirely of neutrons, as the extreme pressure causes the electrons and protons present in normal matter to combine into additional neutrons. These stars are partially supported against further collapse by neutron degeneracy pressure, just as white dwarfs are supported against collapse by electron degeneracy pressure. However, this is not by itself sufficient to hold up an object beyond 0.7 M and repulsive nuclear forces increasingly contribute to supporting more massive neutron stars. If the remnant star has a mass exceeding the Tolman–Oppenheimer–Volkoff limit, approximately 2.2 to 2.9 M, the combination of degeneracy pressure and nuclear forces is insufficient to support the neutron star, causing it to collapse and form a black hole. The most massive neutron star detected so far, PSR J0952–0607, is estimated to be 2.35±0.17 M.

View the full Wikipedia page for Neutron star
↑ Return to Menu

White dwarf in the context of Supernova remnant

A supernova remnant (SNR) is the structure resulting from the explosion of a star in a supernova. The supernova remnant is bounded by an expanding shock wave, and consists of ejected material expanding from the explosion, and the interstellar material it sweeps up and shocks along the way.

There are two common routes to a supernova: either a massive star may run out of fuel, ceasing to generate fusion energy in its core, and collapsing inward under the force of its own gravity to form a neutron star or a black hole; or a white dwarf star may accrete material from a companion star until it reaches a critical mass and undergoes a carbon detonation.

View the full Wikipedia page for Supernova remnant
↑ Return to Menu

White dwarf in the context of Gamma-ray astronomy

Gamma-ray astronomy is a subfield of astronomy where scientists observe and study celestial objects and phenomena in outer space which emit cosmic electromagnetic radiation in the form of gamma rays, i.e. photons with the highest energies (above 100 keV) at the very shortest wavelengths. X-ray astronomy uses the next lower energy range, X-ray radiation, with energy below 100 keV.

In most cases, gamma rays from solar flares and Earth's atmosphere fall in the MeV range, but it's now known that solar flares can also produce gamma rays in the GeV range, contrary to previous beliefs. Much of the detected gamma radiation stems from collisions between hydrogen gas and cosmic rays within our galaxy. These gamma rays, originating from diverse mechanisms such as electron-positron annihilation, the inverse Compton effect and in some cases gamma decay, occur in regions of extreme temperature, density, and magnetic fields, reflecting violent astrophysical processes like the decay of neutral pions. They provide insights into extreme events like supernovae, hypernovae, and the behavior of matter in environments such as pulsars and blazars. A huge number of gamma ray emitting high-energy systems like black holes, stellar coronas, neutron stars, white dwarf stars, remnants of supernova, clusters of galaxies, including the Crab Nebula and the Vela Pulsar (the most powerful source so far), have been identified, alongside an overall diffuse gamma-ray background along the plane of the Milky Way galaxy. Cosmic radiation with the highest energy triggers electron-photon cascades in the atmosphere, while lower-energy gamma rays are only detectable above it. Gamma-ray bursts, like GRB 190114C, are transient phenomena challenging our understanding of high-energy astrophysical processes, ranging from microseconds to several hundred seconds.

View the full Wikipedia page for Gamma-ray astronomy
↑ Return to Menu

White dwarf in the context of Crater (constellation)

Crater is a small constellation in the southern celestial hemisphere. Its name is the Latinization of the Greek krater, a type of cup used to water down wine. One of the 48 constellations listed by the second-century astronomer Ptolemy, it depicts a cup that has been associated with the god Apollo and is perched on the back of Hydra the water snake.

There is no star brighter than third magnitude in the constellation. Its two brightest stars, Delta Crateris of magnitude 3.56 and Alpha Crateris of magnitude 4.07, are ageing orange giant stars that are cooler and larger than the Sun. Beta Crateris is a binary star system composed of a white giant star and a white dwarf. Seven star systems have been found to host planets. A few notable galaxies, including Crater 2 and NGC 3981, and a famous quasar lie within the borders of the constellation.

View the full Wikipedia page for Crater (constellation)
↑ Return to Menu

White dwarf in the context of Stellar nucleosynthesis

In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements. It explains why the observed abundances of elements change over time and why some elements and their isotopes are much more abundant than others. The theory was initially proposed by Fred Hoyle in 1946, who later refined it in 1954. Further advances were made, especially to nucleosynthesis by neutron capture of the elements heavier than iron, by Margaret and Geoffrey Burbidge, William Alfred Fowler and Fred Hoyle in their famous 1957 BFH paper, which became one of the most heavily cited papers in astrophysics history.

Stars evolve because of changes in their composition (the abundance of their constituent elements) over their lifespans, first by burning hydrogen (main sequence star), then helium (horizontal branch star), and progressively burning higher elements. However, this does not by itself significantly alter the abundances of elements in the universe as the elements are contained within the star. Later in its life, a low-mass star will slowly eject its atmosphere via stellar wind, forming a planetary nebula, while a higher–mass star will eject mass via a sudden catastrophic event called a supernova. The term supernova nucleosynthesis is used to describe the creation of elements during the explosion of a massive star or white dwarf.

View the full Wikipedia page for Stellar nucleosynthesis
↑ Return to Menu

White dwarf in the context of Circumstellar disc

A circumstellar disc (or circumstellar disk) is a torus-, pancake- or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

View the full Wikipedia page for Circumstellar disc
↑ Return to Menu

White dwarf in the context of Eclipsing binary

A binary star or binary star system is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved as separate stars using a telescope, in which case they are called visual binaries. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (spectroscopic binaries) or astrometry (astrometric binaries). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called eclipsing binaries, or, together with other binaries that change brightness as they orbit, photometric binaries.

If components in binary star systems are close enough, they can gravitationally distort each other's outer stellar atmospheres. In some cases, these close binary systems can exchange mass, which may bring their evolution to stages that single stars cannot attain. Examples of binaries are Sirius and Cygnus X-1 (Cygnus X-1 being a well-known black hole). Binary stars are also common as the nuclei of many planetary nebulae, and are the progenitors of both novae and type Ia supernovae.

View the full Wikipedia page for Eclipsing binary
↑ Return to Menu

White dwarf in the context of Nova

A nova is a transient astronomical event that causes the sudden appearance of a bright, apparently "new" star (hence the name "nova", Latin for "new") that slowly fades over weeks or months. All observed novae involve white dwarfs in close binary systems, but causes of the dramatic appearance of a nova vary, depending on the circumstances of the two progenitor stars. The main sub-classes of novae are classical novae, recurrent novae (RNe), and dwarf novae. They are all considered to be cataclysmic variable stars.

Classical nova eruptions are the most common type. This type is usually created in a close binary star system consisting of a white dwarf and either a main sequence, subgiant, or red giant star. If the orbital period of the system is a few days or less, the white dwarf is close enough to its companion star to draw accreted matter onto its surface, creating a dense but shallow atmosphere. This atmosphere, mostly consisting of hydrogen, is heated by the hot white dwarf and eventually reaches a critical temperature, causing ignition of rapid runaway fusion. The sudden increase in energy expels the atmosphere into interstellar space, creating the envelope seen as visible light during the nova event. In past centuries such an event was thought to be a new star. A few novae produce short-lived nova remnants, lasting for perhaps several centuries.

View the full Wikipedia page for Nova
↑ Return to Menu

White dwarf in the context of Cataclysmic variable star

In astronomy, cataclysmic variable stars (CVs) are stars which irregularly increase in brightness by a large factor, then drop back down to a quiescent state. They were initially called novae (from Latin 'new'), since those with an outburst brightness visible to the naked eye and an invisible quiescent brightness appeared as new stars in the sky.

Cataclysmic variable stars are binary stars that consist of two components; a white dwarf primary, and a mass transferring secondary. The stars are so close to each other that the gravity of the white dwarf distorts the secondary, and the white dwarf accretes matter from the companion. Therefore, the secondary is often referred to as the donor star, and it is usually less massive than the primary. The infalling matter, which is usually rich in hydrogen, forms in most cases an accretion disk around the white dwarf. Strong UV and X-ray emission is often detected from the accretion disc, powered by the loss of gravitational potential energy from the infalling material. The shortest currently observed orbit in a hydrogen-rich system is 51 minutes in ZTF J1813+4251.

View the full Wikipedia page for Cataclysmic variable star
↑ Return to Menu