Water scarcity in the context of "Sand theft"

Play Trivia Questions online!

or

Skip to study material about Water scarcity in the context of "Sand theft"

Ad spacer

⭐ Core Definition: Water scarcity

Water scarcity (closely related to water stress or water crisis) is the lack of fresh water resources to meet the standard water demand. There are two types of water scarcity. One is physical. The other is economic water scarcity. Physical water scarcity is where there is not enough water to meet all demands. This includes water needed for ecosystems to function. Regions with a desert climate often face physical water scarcity. Central Asia, West Asia, and North Africa are examples of arid areas. Economic water scarcity results from a lack of investment in infrastructure or technology to draw water from rivers, aquifers, or other water sources. It also results from weak human capacity to meet water demand. Many people in sub-Saharan Africa are living with economic water scarcity.

There is enough freshwater available globally and averaged over the year to meet demand. As such, water scarcity is caused by a mismatch between when and where people need water, and when and where it is available. This can happen due to an increase in the number of people in a region, changing living conditions and diets, and expansion of irrigated agriculture. Climate change (including droughts or floods), deforestation, water pollution and wasteful use of water can also mean there is not enough water. These variations in scarcity may also be a function of prevailing economic policy and planning approaches.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Water scarcity in the context of Climate change and cities

Climate change and cities are deeply connected. Cities are one of the greatest contributors and likely best opportunities for addressing climate change. Cities are also one of the most vulnerable parts of the human society to the effects of climate change, and likely one of the most important solutions for reducing the environmental impact of humans. The UN projects that 68% of the world population will live in urban areas by 2050. In the year 2016, 31 mega-cities reported having at least 10 million in their population, 8 of which surpassed 20 million people. However, secondary cities - small to medium size cities (500,000 to 1 million) are rapidly increasing in number and are some of the fastest growing urbanizing areas in the world further contributing to climate change impacts. Cities have a significant influence on construction and transportation—two of the key contributors to global warming emissions. Moreover, because of processes that create climate conflict and climate refugees, city areas are expected to grow during the next several decades, stressing infrastructure and concentrating more impoverished peoples in cities.

High density and urban heat island effect are examples of weather changes that impact cities due to climate change. It also causes exacerbating existing problems such as air pollution, water scarcity, and heat illness in metropolitan areas. Moreover, because most cities have been built on rivers or coastal areas, cities are frequently vulnerable to the subsequent effects of sea level rise, which cause flooding and erosion; these effects are also connected with other urban environmental problems, such as subsidence and aquifer depletion.

↑ Return to Menu

Water scarcity in the context of Terrestrial ecosystem

Terrestrial ecosystems are ecosystems that are found on land. Examples include tundra, taiga, temperate deciduous forest, tropical rain forest, grassland, deserts.

Terrestrial ecosystems differ from aquatic ecosystems by the predominant presence of soil rather than water at the surface and by the extension of plants above this soil/water surface in terrestrial ecosystems. There is a wide range of water availability among terrestrial ecosystems (including water scarcity in some cases), whereas water is seldom a limiting factor to organisms in aquatic ecosystems. Because water buffers temperature fluctuations, terrestrial ecosystems usually experience greater diurnal and seasonal temperature fluctuations than do aquatic ecosystems in similar climates.

↑ Return to Menu

Water scarcity in the context of Sewage

Sewage (or domestic sewage, domestic wastewater, municipal wastewater) is a type of wastewater that is produced by a community of people. It is typically transported through a sewer system. Sewage consists of wastewater discharged from residences and from commercial, institutional and public facilities that exist in the locality. Sub-types of sewage are greywater (from sinks, bathtubs, showers, dishwashers, and clothes washers) and blackwater (the water used to flush toilets, combined with the human waste that it flushes away). Sewage also contains soaps and detergents. Food waste may be present from dishwashing, and food quantities may be increased where garbage disposal units are used. In regions where toilet paper is used rather than bidets, that paper is also added to the sewage. Sewage contains macro-pollutants and micro-pollutants, and may also incorporate some municipal solid waste and pollutants from industrial wastewater.

Sewage usually travels from a building's plumbing either into a sewer, which will carry it elsewhere, or into an onsite sewage facility. Collection of sewage from several households together usually takes places in either sanitary sewers or combined sewers. The former is designed to exclude stormwater flows whereas the latter is designed to also take stormwater. The production of sewage generally corresponds to the water consumption. A range of factors influence water consumption and hence the sewage flowrates per person. These include: Water availability (the opposite of water scarcity), water supply options, climate (warmer climates may lead to greater water consumption), community size, economic level of the community, level of industrialization, metering of household consumption, water cost and water pressure.

↑ Return to Menu

Water scarcity in the context of Land degradation

Land degradation is a process where land becomes less healthy and productive due to a combination of human activities or natural conditions. The causes for land degradation are numerous and complex. Human activities are often the main cause, such as unsustainable land management practices. Natural hazards are excluded as a cause; however human activities can indirectly affect phenomena such as floods and wildfires.

One of the impacts of land degradation is that it can diminish the natural capacity of the land to store and filter water leading to water scarcity. Human-induced land degradation and water scarcity are increasing the levels of risk for agricultural production and ecosystem services.

↑ Return to Menu

Water scarcity in the context of Water resource management

Water resources are natural resources of water that are potentially useful for humans, for example as a source of drinking water supply or irrigation water. These resources can be either freshwater from natural sources, or water produced artificially from other sources, such as from reclaimed water (wastewater) or desalinated water (seawater). 97% of the water on Earth is salt water and only three percent is fresh water; slightly over two-thirds of this is frozen in glaciers and polar ice caps. The remaining unfrozen freshwater is found mainly as groundwater, with only a small fraction present above ground or in the air. Natural sources of fresh water include frozen water, groundwater, surface water, and under river flow. People use water resources for agricultural, household, and industrial activities.

Water resources are under threat from multiple issues. There is water scarcity, water pollution, water conflict and climate change. Fresh water is in principle a renewable resource. However, the world's supply of groundwater is steadily decreasing. Groundwater depletion (or overdrafting) is occurring for example in Asia, South America and North America.

↑ Return to Menu

Water scarcity in the context of Water security

The aim of water security is to maximize the benefits of water for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include too much water (flood), too little water (drought and water scarcity), and poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihood, and production". For example, access to water, sanitation, and hygiene services is one part of water security. Some organizations use the term "water security" more narrowly, referring only to water supply aspects.

Decision makers and water managers aim to reach water security goals that address multiple concerns. These outcomes can include increasing economic and social well-being while reducing risks tied to water. There are linkages and trade-offs between the different outcomes. Planners often consider water security effects for varied groups when they design climate change reduction strategies.

↑ Return to Menu

Water scarcity in the context of Reclaimed water

Water reclamation is the process of converting municipal wastewater or sewage and industrial wastewater into water that can be reused for a variety of purposes. It is also called wastewater reuse, water reuse or water recycling. There are many types of reuse. It is possible to reuse water in this way in cities or for irrigation in agriculture. Other types of reuse are environmental reuse, industrial reuse, and reuse for drinking water, whether planned or not. Reuse may include irrigation of gardens and agricultural fields or replenishing surface water and groundwater. This latter is also known as groundwater recharge. Reused water also serve various needs in residences such as toilet flushing, businesses, and industry. It is possible to treat wastewater to reach drinking water standards. Injecting reclaimed water into the water supply distribution system is known as direct potable reuse. Drinking reclaimed water is not typical. Reusing treated municipal wastewater for irrigation is a long-established practice. This is especially so in arid countries. Reusing wastewater as part of sustainable water management allows water to remain an alternative water source for human activities. This can reduce scarcity. It also eases pressures on groundwater and other natural water bodies.

There are several technologies used to treat wastewater for reuse. A combination of these technologies can meet strict treatment standards and make sure that the processed water is hygienically safe, meaning free from pathogens. The following are some of the typical technologies: Ozonation, ultrafiltration, aerobic treatment (membrane bioreactor), forward osmosis, reverse osmosis, and advanced oxidation, or activated carbon. Some water-demanding activities do not require high grade water. In this case, wastewater can be reused with little or no treatment.

↑ Return to Menu