Water in the context of "Raw material"

⭐ In the context of raw materials, water is considered…

Ad spacer

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Water in the context of Physical object

In natural language and physical science, a physical object or material object (or simply an object or body) is a contiguous collection of matter, within a defined boundary (or surface), that exists in space and time. Usually contrasted with abstract objects and mental objects.

Also in common usage, an object is not constrained to consist of the same collection of matter. Atoms or parts of an object may change over time. An object is usually meant to be defined by the simplest representation of the boundary consistent with the observations. However the laws of physics only apply directly to objects that consist of the same collection of matter.

↑ Return to Menu

Water in the context of Land use

Land use is an umbrella term to describe what happens on a parcel of land. It concerns the benefits derived from using the land, and also the land management actions that humans carry out there. The following categories are used for land use: forest land, cropland (agricultural land), grassland, wetlands, settlements and other lands. The way humans use land, and how land use is changing, has many impacts on the environment. Effects of land use choices and changes by humans include, for example, urban sprawl, soil erosion, soil degradation, land degradation and desertification. Land use and land management practices have a major impact on natural resources including water, soil, nutrients, plants and animals.

Land use change is "the change from one land-use category to another". Land-use change, together with use of fossil fuels, are the major anthropogenic sources of carbon dioxide, a dominant greenhouse gas. Human activity is the most significant cause of land cover change, and humans are also directly impacted by the environmental consequences of these changes. For example, deforestation (the systematic and permanent conversion of previously forested land for other uses) has historically been a primary facilitator of land use and land cover change.

↑ Return to Menu

Water in the context of Pre-Socratic philosophy

Pre-Socratic philosophy, also known as early Greek philosophy, is ancient Greek philosophy before Socrates. Pre-Socratic philosophers were mostly interested in cosmology, the beginning and the substance of the universe, but the inquiries of these early philosophers spanned the workings of the natural world as well as human society, ethics, and religion. They sought explanations based on natural law rather than the actions of gods. Their work and writing has been almost entirely lost. Knowledge of their views comes from testimonia, i.e. later authors' discussions of the work of pre-Socratics. Philosophy found fertile ground in the ancient Greek world because of the close ties with neighboring civilizations and the rise of autonomous civil entities, poleis.

Pre-Socratic philosophy began in the 6th century BC with the three Milesians: Thales, Anaximander, and Anaximenes. They all attributed the arche (a word that could take the meaning of "origin", "substance" or "principle") of the world to, respectively, water, apeiron (the unlimited), and air. Another three pre-Socratic philosophers came from nearby Ionian towns: Xenophanes, Heraclitus, and Pythagoras. Xenophanes is known for his critique of the anthropomorphism of gods. Heraclitus, who was notoriously difficult to understand, is known for his maxim on impermanence, ta panta rhei, and for attributing fire to be the arche of the world. Pythagoras created a cult-like following that advocated that the universe was made up of numbers. The Eleatic school (Parmenides, Zeno of Elea, and Melissus) followed in the 5th century BC. Parmenides claimed that only one thing exists and nothing can change. Zeno and Melissus mainly defended Parmenides' opinion. Anaxagoras and Empedocles offered a pluralistic account of how the universe was created. Leucippus and Democritus are known for their atomism, and their views that only void and matter exist. The Sophists advanced philosophical relativism. The Pre-Socratics have had significant impact on several concepts of Western philosophy, such as naturalism and rationalism, and paved the way for scientific methodology.

↑ Return to Menu

Water in the context of Oil

Oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) and lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturated lipids that are liquid at room temperature.

The general definition of oil includes classes of chemical compounds that may be otherwise unrelated in structure, properties, and uses. Oils may be animal, vegetable, or petrochemical in origin, and may be volatile or non-volatile. They are used for food (e.g., olive oil), fuel (e.g., heating oil), medical purposes (e.g., mineral oil), lubrication (e.g. motor oil), and the manufacture of many types of paints, plastics, and other materials. Specially prepared oils are used in some religious ceremonies and rituals as purifying agents.

↑ Return to Menu

Water in the context of Viscosity

When two fluid layers move relative to each other, a friction force develops between them and the slower layer acts to slow down the faster layer. This internal resistance to flow is described by the fluid property called viscosity, which reflects the internal stickiness of the fluid. In liquids, viscosity arises from cohesive molecular forces, while in gases it results from molecular collisions. Except for the case of superfluidity, there is no fluid with zero viscosity, and thus all fluid flows involve viscous effects to some degree.

For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per metre squared, or pascal-seconds.

↑ Return to Menu

Water in the context of Hydrophobe

In chemistry, hydrophobicity is the chemical property of a molecule (called a hydrophobe) that is seemingly repelled from a mass of water. In contrast, hydrophiles are attracted to water.

Hydrophobic molecules tend to be nonpolar and, thus, prefer other neutral molecules and nonpolar solvents. Because water molecules are polar, hydrophobes do not dissolve well among them. Hydrophobic molecules in water often cluster together, forming micelles. Water on hydrophobic surfaces will exhibit a high contact angle.

↑ Return to Menu

Water in the context of Liquid

Liquid is a state of matter with a definite volume but no fixed shape. When resting in a container, liquids typically adapt to the shape of the container. Liquids are nearly incompressible, maintaining their volume even under pressure. The density of a liquid is usually close to that of a solid, and much higher than that of a gas. Liquids are a form of condensed matter alongside solids, and a form of fluid alongside gases.

A liquid is composed of atoms or molecules held together by intermolecular bonds of intermediate strength. These forces allow the particles to move around one another while remaining closely packed. In contrast, solids have particles that are tightly bound by strong intermolecular forces, limiting their movement to small vibrations in fixed positions. Gases, on the other hand, consist of widely spaced, freely moving particles with only weak intermolecular forces.

↑ Return to Menu

Water in the context of Nature spirit

In religion, a nature deity is a deity in charge of forces of nature, such as water, biological processes, or weather. These deities can also govern natural features such as mountains, trees, or volcanoes. Accepted in animism, pantheism, panentheism, polytheism, deism, totemism, shamanism, Taoism, Hinduism, and paganism, the nature deity can embody a number of archetypes including mother goddess, Mother Nature, or lord of the animals.

↑ Return to Menu

Water in the context of Concrete

Concrete is a composite material composed of aggregate bound together with a fluid cement that cures to a solid over time. It is the second-most-used substance (after water), the most–widely used building material, and the most-manufactured material in the world.

When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that can be poured and molded into shape. The cement reacts with the water through a process called hydration, which hardens it after several hours to form a solid matrix that binds the materials together into a durable stone-like material with various uses. This time allows concrete to not only be cast in forms, but also to have a variety of tooled processes performed. The hydration process is exothermic, which means that ambient temperature plays a significant role in how long it takes concrete to set. Often, additives (such as pozzolans or superplasticizers) are included in the mixture to improve the physical properties of the wet mix, delay or accelerate the curing time, or otherwise modify the finished material. Most structural concrete is poured with reinforcing materials (such as steel rebar) embedded to provide tensile strength, yielding reinforced concrete.

↑ Return to Menu