Volcanic rock in the context of Cryptoexplosion


Volcanic rock in the context of Cryptoexplosion

Volcanic rock Study page number 1 of 5

Play TriviaQuestions Online!

or

Skip to study material about Volcanic rock in the context of "Cryptoexplosion"


⭐ Core Definition: Volcanic rock

Volcanic rocks (often shortened to volcanics in scientific contexts) are rocks formed from lava erupted from a volcano. Like all rock types, the concept of volcanic rock is artificial, and in nature volcanic rocks grade into hypabyssal and metamorphic rocks and constitute an important element of some sediments and sedimentary rocks. For these reasons, in geology, volcanics and shallow hypabyssal rocks are not always treated as distinct. In the context of Precambrian shield geology, the term "volcanic" is often applied to what are strictly metavolcanic rocks. Volcanic rocks and sediment that form from magma erupted into the air are called "pyroclastics," and these are also technically sedimentary rocks.

Volcanic rocks are among the most common rock types on Earth's surface, particularly in the oceans. On land, they are very common at plate boundaries and in flood basalt provinces. It has been estimated that volcanic rocks cover about 8% of the Earth's current land surface.

↓ Menu
HINT:

In this Dossier

Volcanic rock in the context of Dacite

Dacite (/ˈdst/) is a volcanic rock formed by rapid solidification of lava that is high in silica and low in alkali metal oxides. It has a fine-grained (aphanitic) to porphyritic texture and is intermediate in composition between andesite and rhyolite. It is composed predominantly of plagioclase feldspar and quartz.

Dacite is relatively common, occurring in many tectonic settings. It is associated with andesite and rhyolite as part of the subalkaline tholeiitic and calc-alkaline magma series.

View the full Wikipedia page for Dacite
↑ Return to Menu

Volcanic rock in the context of Pumice

Pumice ( /ˈpʌmɪs/), called pumicite in its powdered or dust form, is a volcanic rock that consists of extremely vesicular rough-textured volcanic glass, which may or may not contain crystals. It is typically light-colored. Scoria is another vesicular volcanic rock that differs from pumice in having larger vesicles, thicker vesicle walls, and being dark colored and denser.

Pumice is created when super-heated, highly pressurized rock is rapidly ejected from a volcano. The unusual foamy configuration of pumice happens because of simultaneous rapid cooling and rapid depressurization. The depressurization creates bubbles by lowering the solubility of gases (including water and CO2) that are dissolved in the lava, causing the gases to rapidly exsolve (like the bubbles of CO2 that appear when a carbonated drink is opened). The simultaneous cooling and depressurization freeze the bubbles in a matrix. Pumice is fragments of lava or tephra that cooled in air or water. If pumice from an underwater volcanic eruption reaches the water surface, it can form pumice rafts on the water surface that can be a hazard for ships.

View the full Wikipedia page for Pumice
↑ Return to Menu

Volcanic rock in the context of Lava

Lava is molten or partially molten rock (magma) that has been expelled from the interior of a terrestrial planet (such as Earth) or a moon onto its surface. Lava may be erupted at a volcano or through a fracture in the crust, on land or underwater, usually at temperatures from 800 to 1,200 °C (1,470 to 2,190 °F). Lava may be erupted directly onto the land surface or onto the sea floor or it may be ejected into the atmosphere before falling back down. The solid volcanic rock resulting from subsequent cooling of the molten material is often also called lava.

A lava flow is an outpouring of lava during an effusive eruption. (An explosive eruption, by contrast, produces a mixture of volcanic ash and other fragments called tephra, not lava flows.) The viscosity of most molten lava is about that of ketchup, roughly 10,000 to 100,000 times that of water (the latter two substances measured at 25 °C (77 °F) and 1 atm). Even so, lava can flow great distances before cooling causes it to solidify, because lava exposed to air quickly develops a solid crust that insulates the remaining liquid lava, helping to keep it hot and inviscid enough to continue flowing.

View the full Wikipedia page for Lava
↑ Return to Menu

Volcanic rock in the context of Aphanitic

Aphanites (adj. aphanitic; from Ancient Greek αφανης (aphanḗs) 'invisible') are igneous rocks that are so fine-grained that their component mineral crystals are not visible to the naked eye (in contrast to phanerites, in which the crystals are visible to the unaided eye). This geological texture results from rapid cooling in volcanic or hypabyssal (shallow subsurface) environments. As a rule, the texture of these rocks is not the same as that of volcanic glass (e.g., obsidian), with volcanic glass being non-crystalline (amorphous), and having a glass-like appearance.

Aphanites are commonly porphyritic, having large crystals embedded in the fine groundmass, or matrix. The larger inclusions are called phenocrysts. They consist essentially of very small crystals of minerals such as plagioclase feldspar, with hornblende or augite, and may contain also biotite, quartz, and orthoclase.

View the full Wikipedia page for Aphanitic
↑ Return to Menu

Volcanic rock in the context of Andesite

Andesite (/ˈændəzt/) is a volcanic rock of intermediate composition. In a general sense, it is the intermediate type between silica-poor basalt and silica-rich rhyolite. It is fine-grained (aphanitic) to porphyritic in texture, and is composed predominantly of sodium-rich plagioclase plus pyroxene or hornblende.

Andesite is the extrusive equivalent of plutonic diorite. Characteristic of subduction zones, andesite represents the dominant rock type in island arcs. The average composition of the continental crust is andesitic. Along with basalts, andesites are a component of the Martian crust.

View the full Wikipedia page for Andesite
↑ Return to Menu

Volcanic rock in the context of Rhyolite

Rhyolite (/ˈr.əlt/ RY-ə-lyte) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained groundmass. The mineral assemblage is predominantly quartz, sanidine, and plagioclase. It is the extrusive equivalent of granite.

Its high silica content makes rhyolitic magma extremely viscous. This favors explosive eruptions over effusive eruptions, so this type of magma is more often erupted as pyroclastic rock than as lava flows. Rhyolitic ash-flow tuffs are among the most voluminous of continental igneous rock formations.

View the full Wikipedia page for Rhyolite
↑ Return to Menu

Volcanic rock in the context of Volcanic glass

Volcanic glass is the amorphous (uncrystallized) product of rapidly cooling magma. Like all types of glass, it is a state of matter intermediate between the closely packed, highly ordered array of a crystal and the highly disordered array of liquid. Volcanic glass may refer to the interstitial material, or matrix, in an aphanitic (fine-grained) volcanic rock, or to any of several types of vitreous igneous rocks.

View the full Wikipedia page for Volcanic glass
↑ Return to Menu

Volcanic rock in the context of Nuvvuagittuq Belt

The Nuvvuagittuq Greenstone Belt (NGB; Inuktitut: [nuv.vu.a.git.tuq]) is a sequence of metamorphosed mafic to ultramafic volcanic and associated sedimentary rocks (a greenstone belt) located on the eastern shore of Hudson Bay, 40 km southeast of Inukjuak, Quebec. These rocks have undergone extensive metamorphism, and represent some of the oldest surface rocks on Earth.

The age of the Nuvvuagittuq Greenstone Belt is still subject to debate. One 2007 paper gave an age of c. 3,750 million years (Ma), while another in 2012 gave an age of c. 4,388 Ma. Research published in June 2025 established an age of 4157 Ma for a gabbroic dike cross-cutting the Ujaraaluk unit.

View the full Wikipedia page for Nuvvuagittuq Belt
↑ Return to Menu

Volcanic rock in the context of Mount Vesuvius

Mount Vesuvius (/vəˈsviəs/ və-SOO-vee-əs) is a sommastratovolcano located on the Gulf of Naples in Campania, Italy, about 9 km (5.6 mi) east of Naples and a short distance from the shore. It is one of several volcanoes forming the Campanian volcanic arc. Vesuvius consists of a large cone partially encircled by the steep rim of a summit caldera, resulting from the collapse of an earlier, much higher structure.

The eruption of Mount Vesuvius in 79 AD destroyed the Roman cities of Pompeii, Herculaneum, Oplontis, Stabiae and other settlements. The eruption ejected a cloud of stones, ash and volcanic gases to a height of 33 km (21 mi), erupting molten rock and pulverized pumice at the rate of 6×10 cubic metres (7.8×10 cu yd) per second. More than 1,000 people are thought to have died in the eruption, though the exact toll is unknown. The only surviving witness account consists of two letters by Pliny the Younger to the historian Tacitus.

View the full Wikipedia page for Mount Vesuvius
↑ Return to Menu

Volcanic rock in the context of Basalt

Basalt (UK: /ˈbæsɒlt, -ɔːlt, -əlt/; US: /bəˈsɔːlt, ˈbsɔːlt/) is an aphanitic (fine-grained) extrusive igneous rock formed from the rapid cooling of low-viscosity lava rich in magnesium and iron (mafic lava) exposed at or very near the surface of a rocky planet or moon. More than 90% of all volcanic rock on Earth is basalt. Rapid-cooling, fine-grained basalt has the same chemical composition and mineralogy as slow-cooling, coarse-grained gabbro. The eruption of basalt lava is observed by geologists at about 20 volcanoes per year. Basalt is also an important rock type on other planetary bodies in the Solar System. For example, the bulk of the plains of Venus, which cover ~80% of the surface, are basaltic; the lunar maria are plains of flood-basaltic lava flows; and basalt is a common rock on the surface of Mars.

Molten basalt lava has a low viscosity due to its relatively low silica content (between 45% and 52%), resulting in rapidly moving lava flows that can spread over great areas before cooling and solidifying. Flood basalts are thick sequences of many such flows that can cover hundreds of thousands of square kilometres and constitute the most voluminous of all volcanic formations.

View the full Wikipedia page for Basalt
↑ Return to Menu

Volcanic rock in the context of Stratigraphy

Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks.Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigraphy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy by age).

Several principles and laws come into play when using stratigraphy such as Principle of original horizontality, Law of superposition, Cross-cutting relationships, Principle of inclusions, Principle of faunal succession.

View the full Wikipedia page for Stratigraphy
↑ Return to Menu

Volcanic rock in the context of Isua Greenstone Belt

The Isua Greenstone Belt is an Archean greenstone belt in southwestern Greenland, aged between 3.7 and 3.8 billion years. The belt contains variably metamorphosed mafic volcanic and sedimentary rocks, and is the largest exposure of Eoarchaean supracrustal rocks on Earth. Due to its age and low metamorphic grade relative to many Eoarchaean rocks, the Isua Greenstone Belt has become a focus for investigations on the emergence of life and the style of tectonics that operated on the early Earth.

View the full Wikipedia page for Isua Greenstone Belt
↑ Return to Menu

Volcanic rock in the context of Siberian Traps

The Siberian Traps (Russian: Сибирские траппы, romanizedSibirskiye trappy) are a large region of volcanic rock, known as a large igneous province, in Siberia, Russia. Large volumes of basaltic lava covered a large expanse of Siberia in a flood basalt event. The massive eruptive event that formed the traps is one of the largest known volcanic events in the last 500 million years. The eruptions continued for roughly two million years and spanned the PermianTriassic boundary, or P–T boundary, which occurred around 251.9 million years ago. The Siberian Traps are believed to be the primary cause of the Permian–Triassic extinction event, the most severe extinction event in the geologic record. Subsequent periods of Siberian Traps activity have been linked to smaller biotic crises, including the Smithian-Spathian, Olenekian-Anisian, Middle-Late Anisian, and Anisian-Ladinian extinction events. Today, the area is covered by about 7 million km (3 million sq mi) of basaltic rock, with a volume of around 4 million km (1 million cu mi).

View the full Wikipedia page for Siberian Traps
↑ Return to Menu

Volcanic rock in the context of Volcaniclastic rock

Volcaniclastics are geologic materials composed of broken fragments (clasts) of volcanic rock. These encompass all clastic volcanic materials, regardless of what process fragmented the rock, how it was subsequently transported, what environment it was deposited in, or whether nonvolcanic material is mingled with the volcanic clasts. The United States Geological Survey defines volcaniclastics somewhat more narrowly, to include only rock composed of volcanic rock fragments that have been transported some distance from their place of origin.

In the broad sense of the term, volcaniclastics includes pyroclastic rocks such as the Bandelier Tuff; cinder cones and other tephra deposits; the basal and capping breccia that characterize ʻaʻā lava flows; and lahars and debris flows of volcanic origin.

View the full Wikipedia page for Volcaniclastic rock
↑ Return to Menu

Volcanic rock in the context of Volcanic gas

Volcanic gases are gases given off by active (or, at times, by dormant) volcanoes. These include gases trapped in cavities (vesicles) in volcanic rocks, dissolved or dissociated gases in magma and lava, or gases emanating from lava, from volcanic craters or vents. Volcanic gases can also be emitted through groundwater heated by volcanic action.

The sources of volcanic gases on Earth include:

View the full Wikipedia page for Volcanic gas
↑ Return to Menu

Volcanic rock in the context of Pillow lava

Pillow lavas are lavas that contain characteristic pillow-shaped structures that are attributed to the extrusion of the lava underwater, or subaqueous extrusion. Pillow lavas in volcanic rock are characterized by thick sequences of discontinuous pillow-shaped masses, commonly up to one meter in diameter. They form the upper part of Layer 2 of normal oceanic crust.

View the full Wikipedia page for Pillow lava
↑ Return to Menu

Volcanic rock in the context of Geologic record

The geologic record in stratigraphy, paleontology and other natural sciences refers to the entirety of the layers of rock strata. That is, deposits laid down by volcanism or by deposition of sediment derived from weathering detritus (clays, sands etc.). This includes all its fossil content and the information it yields about the history of the Earth: its past climate, geography, geology and the evolution of life on its surface. According to the law of superposition, sedimentary and volcanic rock layers are deposited on top of each other. They harden over time to become a solidified (competent) rock column, that may be intruded by igneous rocks and disrupted by tectonic events.

View the full Wikipedia page for Geologic record
↑ Return to Menu

Volcanic rock in the context of Paleomagnetism

Paleomagnetism (occasionally palaeomagnetism) is the study of prehistoric Earth's magnetic fields recorded in rocks, sediment, or archeological materials. Geophysicists who specialize in paleomagnetism are called paleomagnetists.

Certain magnetic minerals in rocks can record the direction and intensity of Earth's magnetic field at the time they formed. This record provides information on the past behavior of the geomagnetic field and the past location of tectonic plates. The record of geomagnetic reversals preserved in volcanic and sedimentary rock sequences (magnetostratigraphy) provides a time-scale that is used as a geochronologic tool.

View the full Wikipedia page for Paleomagnetism
↑ Return to Menu