Viviparity in the context of Birth


Viviparity in the context of Birth

Viviparity Study page number 1 of 2

Play TriviaQuestions Online!

or

Skip to study material about Viviparity in the context of "Birth"


⭐ Core Definition: Viviparity

In animals, viviparity is the development of the embryo inside the body of the mother, with the maternal circulation providing for the metabolic needs of the embryo's development, until the mother gives birth to a fully or partially developed juvenile that is at least metabolically independent. This is opposed to oviparity, where the embryos develop independently outside the mother in eggs until they are developed enough to break out as hatchlings; and ovoviviparity, where the embryos are developed in eggs that remain carried inside the mother's body until the hatchlings emerge from the mother as juveniles, similar to a live birth.

↓ Menu
HINT:

In this Dossier

Viviparity in the context of Prenatal

Prenatal development (from Latin natalis 'relating to birth') involves the development of the embryo and of the fetus during a viviparous animal's gestation. Prenatal development starts with fertilization, in the germinal stage of embryonic development, and continues in fetal development until birth. The term "prenate" is used to describe an unborn offspring at any stage of gestation.

In human pregnancy, prenatal development is also called antenatal development. The development of the human embryo follows fertilization, and continues as fetal development. By the end of the tenth week of gestational age, the embryo has acquired its basic form and is referred to as a fetus. The next period is that of fetal development where many organs become fully developed. This fetal period is described both topically (by organ) and chronologically (by time) with major occurrences being listed by gestational age.

View the full Wikipedia page for Prenatal
↑ Return to Menu

Viviparity in the context of Gestation

Gestation is the period of development during the carrying of an embryo, and later fetus, inside viviparous animals (the embryo develops within the parent). It is typical for mammals, but also occurs for some non-mammals. Mammals during pregnancy can have one or more gestations at the same time, for example in a multiple birth.

The time interval of a gestation is called the gestation period. In obstetrics, gestational age refers to the time since the onset of the last menses, which on average is fertilization age plus two weeks.

View the full Wikipedia page for Gestation
↑ Return to Menu

Viviparity in the context of Anamniotes

The anamniotes are an informal group of vertebrates comprising all fish and amphibians, which lay their eggs in aquatic environments. They are distinguished from the amniotes (reptiles, birds and mammals), which can reproduce on dry land either by laying shelled eggs or by carrying fertilized eggs within the female. Older sources, particularly before the 20th century, may refer to anamniotes as "lower vertebrates" and amniotes as "higher vertebrates", based on the antiquated idea of the evolutionary great chain of being.

The name "anamniote" is a back-formation word created by adding the prefix an- to the word amniote, which in turn refers to the amnion, an extraembryonic membrane present during the amniotes' embryonic development which serves as a biochemical barrier that shields the embryo from environmental fluctuations by regulating the oxygen, carbon dioxide and metabolic waste exchanges and secreting a cushioning fluid. As the name suggests, anamniote embryos lack an amnion during embryonic development, and therefore rely on the presence of external water to provide oxygen and help dilute and excrete waste products (particularly ammonia) via diffusion in order for the embryo to complete development without being intoxicated by their own metabolites. This means anamniotes are almost always dependent on an aqueous (or at least very moist) environment for reproduction and are thus restricted to spawning in or near water bodies. They are also highly sensitive to chemical and temperature variation in the surrounding water, and are also more vulnerable to egg predation and parasitism.

View the full Wikipedia page for Anamniotes
↑ Return to Menu

Viviparity in the context of Placoderm

Placoderms (from Ancient Greek πλάξ [plax, plakos] 'plate' and δέρμα [derma] 'skin') are vertebrate animals of the class Placodermi, an extinct group of prehistoric fish known from Paleozoic fossils during the Silurian and the Devonian periods. While their endoskeletons are mainly cartilaginous, their head and thorax were covered by articulated armoured plates (hence the name), and the rest of the body was scaled or naked depending on the species.

Placoderms were among the first jawed fish (their jaws likely evolved from the first pair of gill arches), as well as the first vertebrates to have true teeth. They were also the first fish clade to develop pelvic fins, the second set of paired fins and the homologous precursor to hindlimbs in tetrapods. 380-million-year-old fossils of three other genera, Incisoscutum, Materpiscis and Austroptyctodus, represent the oldest known examples of live birth.

View the full Wikipedia page for Placoderm
↑ Return to Menu

Viviparity in the context of Placenta

The placenta (pl.: placentas or placentae) is a temporary embryonic and later fetal organ that begins developing from the blastocyst shortly after implantation. It plays critical roles in facilitating nutrient, gas, and waste exchange between the physically separate maternal and fetal circulations, and is an important endocrine organ, producing hormones that regulate both maternal and fetal physiology during pregnancy. The placenta connects to the fetus via the umbilical cord, and on the opposite aspect to the maternal uterus in a species-dependent manner. In humans, a thin layer of maternal decidual (endometrial) tissue comes away with the placenta when it is expelled from the uterus following birth (sometimes incorrectly referred to as the 'maternal part' of the placenta). Placentas are a defining characteristic of placental mammals, but are also found in marsupials and some non-mammals with varying levels of development.

Mammalian placentas probably first evolved about 150 million to 200 million years ago. The protein syncytin, found in the outer barrier of the placenta (the syncytiotrophoblast) between mother and fetus, has a certain RNA signature in its genome that has led to the hypothesis that it originated from an ancient retrovirus: essentially a virus that helped pave the transition from egg-laying to live-birth.

View the full Wikipedia page for Placenta
↑ Return to Menu

Viviparity in the context of Onychophora

Onychophora /ɒnɪˈkɒfərə/ (from Ancient Greek: ονυχής, onyches, "claws"; and φέρειν, pherein, "to carry"), commonly known as velvet worms (for their velvety texture and somewhat wormlike appearance) or more ambiguously as peripatus /pəˈrɪpətəs/ (after the first described genus, Peripatus), is a phylum of elongate, soft-bodied, many-legged animals. In appearance they have variously been compared to worms with legs, caterpillars, and slugs. They prey upon other invertebrates, which they catch by ejecting an adhesive slime. Approximately 200 species of velvet worms have been described, although the true number is likely to be much greater.

The two extant families of velvet worms are Peripatidae and Peripatopsidae. They show a peculiar distribution, with the peripatids being predominantly equatorial and tropical, while the peripatopsids are all found south of the equator. It is the only phylum within Animalia that is wholly endemic to terrestrial environments, at least among extant members. Velvet worms are generally considered close relatives of the Arthropoda and Tardigrada, with which they form the proposed taxon Panarthropoda. This makes them of palaeontological interest, as they can help reconstruct the ancestral arthropod. Only two fossil species are confidently assigned as onychophorans: Antennipatus from the Late Carboniferous, and Cretoperipatus from the Late Cretaceous, the latter belonging to Peripatidae. In modern zoology, they are known for their mating behaviours and for some species bearing live young.

View the full Wikipedia page for Onychophora
↑ Return to Menu

Viviparity in the context of Ovoviviparity

Ovoviviparity, ovovivipary, ovivipary, internal oviparity, or aplacental viviparity is a "bridging" form of reproduction between egg-laying oviparous and live-bearing viviparous reproduction. Ovoviviparous animals possess embryos that develop inside eggs that remain in the mother's body until they are ready to hatch.

The young of some ovoviviparous amphibians, such as Limnonectes larvaepartus, are born as larvae, and undergo further metamorphosis outside the body of the mother. Members of genera Nectophrynoides and Eleutherodactylus bear froglets, with not only the hatching, but all the most conspicuous metamorphosis, being completed inside the body of the mother before birth.

View the full Wikipedia page for Ovoviviparity
↑ Return to Menu

Viviparity in the context of Matrotrophy

Matrotrophy is a form of maternal care during organism development, associated with live birth (viviparity), in which the embryo of an animal or flowering plant is supplied with additional nutrition from the mother (e.g. through a placenta). This can be contrasted with lecithotrophy, in which the only source of nutrition for the embryo is yolk originally contained within its egg.

View the full Wikipedia page for Matrotrophy
↑ Return to Menu

Viviparity in the context of Internal fertilization

Internal fertilization is the union of an egg and sperm cell during sexual reproduction inside the female body. Internal fertilization, unlike its counterpart, external fertilization, brings more control to the female with reproduction. Male animals inseminate females in order to internally fertilize their egg cells.

Most taxa that reproduce by internal fertilization are gonochoric. Male mammals, reptiles, and certain other vertebrates transfer sperm into the female's vagina or cloaca through an intromittent organ during copulation. Most birds use the "cloacal kiss," pressing cloacas together to transfer sperm. Salamanders, spiders, some insects and some molluscs undertake internal fertilization by transferring a spermatophore, a bundle of sperm, from the male to the female. After fertilization, embryos develop in eggs in oviparous species or inside the mother’s reproductive tract in viviparous ones.

View the full Wikipedia page for Internal fertilization
↑ Return to Menu

Viviparity in the context of Aphid

Aphids are small sap-sucking insects in the family Aphididae. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

The life cycle of some species involves an alternation between two species of host plants, for example between an annual crop and a woody plant. Some species feed on only one type of plant, while others are generalists, colonizing many plant groups. About 5,000 species of aphid have been described, all included in the family Aphididae. Around 400 of these are found on food and fiber crops, and many are serious pests of agriculture and forestry, as well as an annoyance for gardeners. So-called dairying ants have a mutualistic relationship with aphids, tending them for their honeydew and protecting them from predators.

View the full Wikipedia page for Aphid
↑ Return to Menu

Viviparity in the context of Thalattosuchia

Thalattosuchia is a clade of mostly marine crocodylomorphs from the Early Jurassic to the Early Cretaceous that had a cosmopolitan distribution. They are colloquially referred to as marine crocodiles or sea crocodiles, though they are not members of Crocodilia and records from Thailand and China suggest that some members lived in freshwater. The clade contains two major subgroupings, the Teleosauroidea and Metriorhynchoidea. Teleosauroids are not greatly specialised for oceanic life, with back osteoderms similar to other crocodyliformes. Within Metriorhynchoidea, the Metriorhynchidae displayed extreme adaptions for life in the open ocean, including the transformation of limbs into flippers, the development of a tail fluke, and smooth, scaleless skin, and probably gave live birth, seemingly uniquely among archosaurs.

View the full Wikipedia page for Thalattosuchia
↑ Return to Menu

Viviparity in the context of Incisoscutum

Incisoscutum is an extinct genus of arthrodire placoderm from the Early Frasnian Gogo Reef, from Late Devonian Australia. The genus contains two species I. ritchiei, named after Alex Ritchie, a palaeoichthyologist and senior fellow of the Australian Museum, and I. sarahae, named after Sarah Long, daughter of its discoverer and describer, John A. Long.

The genus is important in the study of early vertebrates as well-preserved fossilized embryos have been found in female specimens and ossified pelvic claspers found in males. This shows that viviparity and internal fertilization was common amongst these primitive jawed vertebrates, which are outside the crown group Gnathostomata.

View the full Wikipedia page for Incisoscutum
↑ Return to Menu

Viviparity in the context of Materpiscis

Materpiscis (Latin for mother fish) is a genus of ptyctodontid placoderm from the Late Devonian located at the Gogo Formation of Western Australia. Known from only one specimen, it is unique in having an unborn embryo present inside the mother, with remarkable preservation of a mineralised placental feeding structure (umbilical cord). This makes Materpiscis the oldest known vertebrate to show viviparity, or giving birth to live young.

View the full Wikipedia page for Materpiscis
↑ Return to Menu