Viscous stress tensor in the context of Tensor


Viscous stress tensor in the context of Tensor

Viscous stress tensor Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Viscous stress tensor in the context of "Tensor"


⭐ Core Definition: Viscous stress tensor

The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.

The viscous stress tensor is formally similar to the elastic stress tensor (Cauchy tensor) that describes internal forces in an elastic material due to its deformation. Both tensors map the normal vector of a surface element to the density and direction of the stress acting on that surface element. However, elastic stress is due to the amount of deformation (strain), while viscous stress is due to the rate of change of deformation over time (strain rate). In viscoelastic materials, whose behavior is intermediate between those of liquids and solids, the total stress tensor comprises both viscous and elastic ("static") components. For a completely fluid material, the elastic term reduces to the hydrostatic pressure.

↓ Menu
HINT:

In this Dossier

Viscous stress tensor in the context of Newtonian fluid

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to magnitude of the fluid's velocity vector.

A fluid is Newtonian only if the tensors that describe the viscous stress and the strain rate are related by a constant viscosity tensor that does not depend on the stress state and velocity of the flow. If the fluid is also isotropic (i.e., its mechanical properties are the same along any direction), the viscosity tensor reduces to two real coefficients, describing the fluid's resistance to continuous shear deformation and continuous compression or expansion, respectively.

View the full Wikipedia page for Newtonian fluid
↑ Return to Menu