Vector length in the context of Normed vector space


Vector length in the context of Normed vector space

Vector length Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Vector length in the context of "Normed vector space"


⭐ Core Definition: Vector length

In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and zero is only at the origin. In particular, the Euclidean distance in a Euclidean space is defined by a norm on the associated Euclidean vector space, called the Euclidean norm, the 2-norm, or, sometimes, the magnitude or length of the vector. This norm can be defined as the square root of the inner product of a vector with itself.

A seminorm satisfies the first two properties of a norm but may be zero for vectors other than the origin. A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space.

↓ Menu
HINT:

In this Dossier

Vector length in the context of Scalar (physics)

Scalar quantities or simply scalars are physical quantities that can be described by a single pure number (a scalar, typically a real number), accompanied by a unit of measurement, as in "10 cm" (ten centimeters).Examples of scalar are length, mass, charge, volume, and time. Scalars may represent the magnitude of physical quantities, such as speed is to velocity. Scalars do not represent a direction.

Scalars are unaffected by changes to a vector space basis (i.e., a coordinate rotation) but may be affected by translations (as in relative speed).A change of a vector space basis changes the description of a vector in terms of the basis used but does not change the vector itself, while a scalar has nothing to do with this change. In classical physics, like Newtonian mechanics, rotations and reflections preserve scalars, while in relativity, Lorentz transformations or space-time translations preserve scalars. The term "scalar" has origin in the multiplication of vectors by a unitless scalar, which is a uniform scaling transformation.

View the full Wikipedia page for Scalar (physics)
↑ Return to Menu