Vasopressin in the context of AVP gene


Vasopressin in the context of AVP gene
HINT:

In this Dossier

Vasopressin in the context of Neuroendocrine

Neuroendocrine cells are cells that receive neuronal input (through neurotransmitters released by nerve cells or neurosecretory cells) and, as a consequence of this input, release messenger molecules (hormones) into the blood. In this way they bring about an integration between the nervous system and the endocrine system, a process known as neuroendocrine integration. An example of a neuroendocrine cell is a cell of the adrenal medulla (innermost part of the adrenal gland), which releases adrenaline to the blood. The adrenal medullary cells are controlled by the sympathetic division of the autonomic nervous system. These cells are modified postganglionic neurons. Autonomic nerve fibers lead directly to them from the central nervous system. The adrenal medullary hormones are kept in vesicles much in the same way neurotransmitters are kept in neuronal vesicles. Hormonal effects can last up to ten times longer than those of neurotransmitters. Sympathetic nerve fiber impulses stimulate the release of adrenal medullary hormones. In this way the sympathetic division of the autonomic nervous system and the medullary secretions function together.

The major center of neuroendocrine integration in the body is found in the hypothalamus and the pituitary gland. Here hypothalamic neurosecretory cells release factors to the blood. Some of these factors (releasing hormones), released at the hypothalamic median eminence, control the secretion of pituitary hormones, while others (the hormones oxytocin and vasopressin) are released directly into the blood.

View the full Wikipedia page for Neuroendocrine
↑ Return to Menu

Vasopressin in the context of Stress hormone

Stress hormones are secreted by endocrine glands to modify one's internal environment during times of stress. By performing various functions such as mobilizing energy sources, increasing heart rate, and downregulating metabolic processes which are not immediately necessary, stress hormones promote the survival of the organism. The secretions of some hormones are also downplayed during stress. Some of the better known stress hormones are:

View the full Wikipedia page for Stress hormone
↑ Return to Menu

Vasopressin in the context of 5-HT receptor

5-HT receptors, 5-hydroxytryptamine receptors, or serotonin receptors, are a group of G protein-coupled receptor and ligand-gated ion channels found in multiple tissues including the central and peripheral nervous systems. They mediate both excitatory and inhibitory neurotransmission. The serotonin (i.e., 5-hydroxytryptamine, hence "5-HT") receptors are activated by the neurotransmitter serotonin, which acts as their natural ligand.

The serotonin receptors modulate the release of many neurotransmitters, including glutamate, GABA, dopamine, epinephrine / norepinephrine, and acetylcholine, as well as many hormones, including oxytocin, prolactin, vasopressin, cortisol, corticotropin, and substance P, among others. Serotonin receptors influence various biological and neurological processes such as aggression, anxiety, appetite, cognition, learning, memory, mood, nausea, sleep, and thermoregulation. They are the target of a variety of pharmaceutical and recreational drugs, including many antidepressants, antipsychotics, anorectics, antiemetics, gastroprokinetic agents, antimigraine agents, psychedelics (hallucinogens), and entactogens.

View the full Wikipedia page for 5-HT receptor
↑ Return to Menu

Vasopressin in the context of Paraventricular nucleus of hypothalamus

The paraventricular nucleus (PVN) is a nucleus in the hypothalamus, located next to the third ventricle. Many of its neurons project to the posterior pituitary where they secrete oxytocin, and a smaller amount of vasopressin. Other secretions are corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). CRH and TRH are secreted into the hypophyseal portal system, and target effector endocrine cells in the anterior pituitary. Dysfunctions of the PVN can cause hypersomnia in mice. In humans, the dysfunction of the PVN and the other nuclei around it can lead to drowsiness for up to 20 hours per day. The PVN is thought to mediate many diverse functions through different hormones, including osmoregulation, appetite, wakefulness, and the response of the body to stress.

View the full Wikipedia page for Paraventricular nucleus of hypothalamus
↑ Return to Menu

Vasopressin in the context of Vascular organ of lamina terminalis

The vascular organ of lamina terminalis (VOLT), organum vasculosum of the lamina terminalis (OVLT), or supraoptic crest is a sensory organ, one of the circumventricular organs of the third ventricle within the lamina terminalis. It is covered with pia mater, and lined with ependyma. It overlies the paraventricular nucleus of hypothalamus, and is involved in the secretion of vasopressin. The VOLT monitors the presence of peptides and macromolecules in the bloodstream, and conveys the information to the hypothalamus.

It is one of the three sensory circumventricular organs of the brain. The other four are secretory.

View the full Wikipedia page for Vascular organ of lamina terminalis
↑ Return to Menu

Vasopressin in the context of Neurohypophysis

The posterior pituitary (or neurohypophysis) is the posterior lobe of the pituitary gland which is part of the endocrine system. Unlike the anterior pituitary, the posterior pituitary is not glandular, but largely a collection of axonal projections from the hypothalamus that terminate behind the anterior pituitary, and serve as a site for the secretion of neurohypophysial hormones (oxytocin and vasopressin) directly into the blood. The hypothalamic–neurohypophyseal system is composed of the hypothalamus (the paraventricular nucleus and supraoptic nucleus), posterior pituitary, and these axonal projections.

View the full Wikipedia page for Neurohypophysis
↑ Return to Menu

Vasopressin in the context of Diuretic

A diuretic (/ˌdjʊˈrɛtɪk/ ) is any substance that promotes diuresis, the increased production of urine. This includes forced diuresis. A diuretic tablet is sometimes colloquially called a water tablet. There are several categories of diuretics. All diuretics increase the excretion of water from the body, through the kidneys. There exist several classes of diuretic, and each works in a distinct way. Alternatively, an antidiuretic, such as vasopressin (antidiuretic hormone), is an agent or drug which reduces the excretion of water in urine.

View the full Wikipedia page for Diuretic
↑ Return to Menu