Vanish at infinity in the context of Normed vector space


Vanish at infinity in the context of Normed vector space

Vanish at infinity Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Vanish at infinity in the context of "Normed vector space"


⭐ Core Definition: Vanish at infinity

In mathematics, a function is said to vanish at infinity if its values approach 0 as the input grows without bounds. There are two different ways to define this with one definition applying to functions defined on normed vector spaces and the other applying to functions defined on locally compact spaces. Aside from this difference, both of these notions correspond to the intuitive notion of adding a point at infinity, and requiring the values of the function to get arbitrarily close to zero as one approaches it. This definition can be formalized in many cases by adding an (actual) point at infinity.

↓ Menu
HINT:

In this Dossier

Vanish at infinity in the context of Bound state

A bound state is a composite of two or more fundamental building blocks, such as particles, atoms, or bodies, that behaves as a single object and in which energy is required to split them.

In quantum physics, a bound state is a quantum state of a particle subject to a potential such that the particle has a tendency to remain localized in one or more regions of space. The potential may be external or it may be the result of the presence of another particle; in the latter case, one can equivalently define a bound state as a state representing two or more particles whose interaction energy exceeds the total energy of each separate particle. One consequence is that, given a potential vanishing at infinity, negative-energy states must be bound. The energy spectrum of the set of bound states are most commonly discrete, unlike scattering states of free particles, which have a continuous spectrum.

View the full Wikipedia page for Bound state
↑ Return to Menu