Vacuum tube in the context of "Triode"

Play Trivia Questions online!

or

Skip to study material about Vacuum tube in the context of "Triode"

Ad spacer

⭐ Core Definition: Vacuum tube

A vacuum tube, electron tube, thermionic valve (British usage), or tube (North America) is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. It takes the form of an evacuated tubular envelope of glass or sometimes metal containing electrodes connected to external connection pins.

The type known as a thermionic tube or thermionic valve utilizes thermionic emission of electrons from a hot cathode for fundamental electronic functions such as signal amplification and current rectification. Non-thermionic types such as vacuum phototubes achieve electron emission through the photoelectric effect, and are used for such purposes as the detection of light and measurement of its intensity. In both types the electrons are accelerated from the cathode to the anode by the electric field in the tube.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Vacuum tube in the context of Image sensor

An image sensor or imager is a device that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves (as they pass through or reflect off objects) into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

The two main types of electronic image sensors are the charge-coupled device (CCD) and the active-pixel sensor (CMOS sensor). Both CCD and CMOS sensors are based on metal–oxide–semiconductor (MOS) technology, with CCDs based on MOS capacitors and CMOS sensors based on MOSFET (MOS field-effect transistor) amplifiers. Analog sensors for invisible radiation tend to involve vacuum tubes of various kinds, while digital sensors include flat-panel detectors.

↑ Return to Menu

Vacuum tube in the context of Broadcasting

Broadcasting is the distribution of audio and audiovisual content to dispersed audiences via an electronic mass communications medium, typically using the electromagnetic spectrum (radio waves), in a one-to-many model. Broadcasting began with AM radio, which became popular around 1920 with the spread of vacuum tube radio transmitters and receivers. Before this, most implementations of electronic communication (early radio, telephone, and telegraph) were one-to-one, with the message intended for a single recipient. The term broadcasting evolved from its use as the agricultural method of sowing seeds in a field by casting them broadly about. It was later adopted for describing the widespread distribution of information by printed materials or by telegraph. Examples applying it to "one-to-many" radio transmissions of an individual station to multiple listeners appeared as early as 1898.

Over-the-air broadcasting is usually associated with radio and television, though more recently, both radio and television transmissions have begun to be distributed by cable (cable television). The receiving parties may include the general public or a relatively small subset; the point is that anyone with the appropriate receiving technology and equipment (e.g., a radio or television set) can receive the signal. The field of broadcasting includes both government-managed services such as public radio, community radio and public television, and private commercial radio and commercial television. The U.S. Code of Federal Regulations, title 47, part 97 defines broadcasting as "transmissions intended for reception by the general public, either direct or relayed". Private or two-way telecommunications transmissions do not qualify under this definition. For example, amateur ("ham") and citizens band (CB) radio operators are not allowed to broadcast. As defined, transmitting and broadcasting are not the same.

↑ Return to Menu

Vacuum tube in the context of High technology

High technology (high tech or high-tech), also known as advanced technology (advanced tech) is technology that is at the cutting edge: the highest form of technology available. It can be defined as either the most complex or the newest technology on the market. The opposite of high tech is low technology, referring to simple, often traditional or mechanical technology. When high tech gets old, it becomes low tech, for example vacuum tube electronics. Further, high tech is related to the concept of mid-tech, that is a balance between the two opposite extreme qualities of low-tech and high tech. Mid-tech could be understood as an inclusive middle that combines the efficiency and versatility of digital/automated technology with low-tech's potential for autonomy and resilience.

Startups working on high technologies (or developing new high technologies) are sometimes referred to as deep tech; the term may also refer to disruptive innovations or those based on scientific discoveries.

↑ Return to Menu

Vacuum tube in the context of Mechanical television

Mechanical television or mechanical scan television is an obsolete television system that relies on a mechanical scanning device, such as a rotating disk with holes in it or a rotating mirror drum, to scan the scene and generate the video signal, and a similar mechanical device at the receiver to display the picture. This contrasts with vacuum tube electronic television technology, using electron beam scanning methods, for example in cathode-ray tube (CRT) televisions. Subsequently, modern solid-state liquid-crystal displays (LCD) and LED displays are now used to create and display television pictures.

Mechanical scanning methods were used in the earliest experimental television systems in the 1920s and 1930s. One of the first experimental wireless television transmissions was by Scottish inventor John Logie Baird on October 2, 1925, in London. By 1928 many radio stations were broadcasting experimental television programs using mechanical systems. However, the technology never produced images of sufficient quality to become popular with the public. Mechanical-scan systems were largely superseded by electronic-scan technology in the mid-1930s, which was used in the first commercially successful television broadcasts that began in the late 1930s. In the U.S., experimental stations such as W2XAB in New York City began broadcasting mechanical television programs in 1931 but discontinued operations on February 20, 1933, until returning with an all-electronic system in 1939.

↑ Return to Menu

Vacuum tube in the context of Cathode-ray tube

A cathode-ray tube (CRT) is a vacuum tube containing one or more electron guns, which emit electron beams that are manipulated to display images on a phosphorescent screen. The images may represent electrical waveforms on an oscilloscope, a frame of video on an analog television set (TV), digital raster graphics on a computer monitor, or other phenomena like radar targets. A CRT in a TV is commonly called a picture tube. CRTs have also been used as memory devices, in which case the screen is not intended to be visible to an observer. The term cathode ray was used to describe electron beams when they were first discovered, before it was understood that what was emitted from the cathode was a beam of electrons.

In CRT TVs and computer monitors, the entire front area of the tube is scanned repeatedly and systematically in a fixed pattern called a raster. In color devices, an image is produced by controlling the intensity of each of three electron beams, one for each additive primary color (red, green, and blue) with a video signal as a reference. In modern CRT monitors and TVs the beams are bent by magnetic deflection, using a deflection yoke. Electrostatic deflection is commonly used in oscilloscopes.

↑ Return to Menu

Vacuum tube in the context of Amplifiers

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude (magnitude of the voltage or current) of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

An amplifier can be either a separate piece of equipment or an electrical circuit contained within another device. Amplification is fundamental to modern electronics, and amplifiers are widely used in almost all electronic equipment. Amplifiers can be categorized in different ways. One is by the frequency of the electronic signal being amplified. For example, audio amplifiers amplify signals of less than 20 kHz, radio frequency (RF) amplifiers amplify frequencies in the range between 20 kHz and 300 GHz, and servo amplifiers and instrumentation amplifiers may work with very low frequencies down to direct current. Amplifiers can also be categorized by their physical placement in the signal chain; a preamplifier may precede other signal processing stages, for example, while a power amplifier is usually used after other amplifier stages to provide enough output power for the final use of the signal. The first practical electrical device which could amplify was the triode vacuum tube, invented in 1906 by Lee de Forest, which led to the first amplifiers around 1912. Today most amplifiers use transistors.

↑ Return to Menu

Vacuum tube in the context of Distortion (music)

Distortion and overdrive are forms of audio signal processing used to alter the sound of amplified electric musical instruments, usually by increasing their gain, producing a "fuzzy", "growling", or "gritty" tone. Distortion is most commonly used with the electric guitar, but may be used with other instruments, such as electric bass, electric piano, synthesizer, and Hammond organ. Guitarists playing electric blues originally obtained an overdriven sound by turning up their vacuum tube-powered guitar amplifiers to high volumes, which caused the signal to distort. Other ways to produce distortion have been developed since the 1960s, such as distortion effect pedals. The growling tone of a distorted electric guitar is a key part of many genres, including blues and many rock music genres, notably hard rock, punk rock, hardcore punk, acid rock, grunge and heavy metal music, while the use of distorted bass has been essential in a genre of hip hop music and alternative hip hop known as "SoundCloud rap".

The effects alter the instrument sound by clipping the signal (pushing it past its maximum, which shears off the peaks and troughs of the signal waves), adding sustain and harmonic and inharmonic overtones and leading to a compressed sound that is often described as "warm" and "dirty", depending on the type and intensity of distortion used. The terms distortion and overdrive are often used interchangeably; where a distinction is made, distortion is a more extreme version of the effect than overdrive. Fuzz is a particular form of extreme distortion originally created by guitarists using faulty equipment (such as a misaligned valve (tube); see below), which has been emulated since the 1960s by a number of "fuzzbox" effects pedals.

↑ Return to Menu