Upwelling in the context of "Physical oceanography"

Play Trivia Questions online!

or

Skip to study material about Upwelling in the context of "Physical oceanography"

Ad spacer

⭐ Core Definition: Upwelling

Upwelling is an oceanographic phenomenon that involves wind-driven motion of dense, cooler, and usually nutrient-rich water from deep water towards the ocean surface. It replaces the warmer and usually nutrient-depleted surface water. The nutrient-rich upwelled water stimulates the growth and reproduction of primary producers such as phytoplankton. The biomass of phytoplankton and the presence of cool water in those regions allow upwelling zones to be identified by cool sea surface temperatures (SST) and high concentrations of chlorophyll a.

The increased availability of nutrients in upwelling regions results in high levels of primary production and thus fishery production. Approximately 25% of the total global marine fish catches come from five upwellings, which occupy only 5% of the total ocean area. Upwellings that are driven by coastal currents or diverging open ocean have the greatest impact on nutrient-enriched waters and global fishery yields.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Upwelling in the context of Ocean acidification

Ocean acidification is the ongoing decrease in the pH of the Earth's ocean. Between 1950 and 2020, the average pH of the ocean surface fell from approximately 8.15 to 8.05. Carbon dioxide emissions from human activities are the primary cause of ocean acidification, with atmospheric carbon dioxide (CO2) levels exceeding 422 ppm (as of 2024). CO2 from the atmosphere is absorbed by the oceans. This chemical reaction produces carbonic acid (H2CO3) which dissociates into a bicarbonate ion (HCO3) and a hydrogen ion (H). The presence of free hydrogen ions (H) lowers the pH of the ocean, increasing acidity (this does not mean that seawater is acidic yet; it is still alkaline, with a pH higher than 8). Marine calcifying organisms, such as mollusks and corals, are especially vulnerable because they rely on calcium carbonate to build shells and skeletons.

A change in pH by 0.1 represents a 26% increase in hydrogen ion concentration in the world's oceans (the pH scale is logarithmic, so a change of one in pH units is equivalent to a tenfold change in hydrogen ion concentration). Sea-surface pH and carbonate saturation states vary depending on ocean depth and location. Colder and higher latitude waters are capable of absorbing more CO2. This can cause acidity to rise, lowering the pH and carbonate saturation levels in these areas. There are several other factors that influence the atmosphere-ocean CO2 exchange, and thus local ocean acidification. These include ocean currents and upwelling zones, proximity to large continental rivers, sea ice coverage, and atmospheric exchange with nitrogen and sulfur from fossil fuel burning and agriculture.

↑ Return to Menu

Upwelling in the context of Plateau

In geology and physical geography, a plateau (/pləˈt, plæˈt, ˈplæt/; French: [plato]; pl.: plateaus or plateaux), also called a high plain or a tableland, is an area of highland consisting of flat terrain that is raised sharply above the surrounding area on at least one side. Often one or more sides have deep hills or escarpments. Plateaus can be formed by a number of processes, including upwelling of volcanic magma, extrusion of lava, and erosion by water and glaciers. Plateaus are classified according to their surrounding environment as intermontane, piedmont, or continental. A few plateaus may have a small flat top while others have wider ones.

↑ Return to Menu

Upwelling in the context of Ocean current

An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and strength. Ocean currents move both horizontally, on scales that can span entire oceans, as well as vertically, with vertical currents (upwelling and downwelling) playing an important role in the movement of nutrients and gases, such as carbon dioxide, between the surface and the deep ocean.

Ocean currents are classified by temperature as either warm currents or cold currents. They are also classified by their velocity, dimension, and direction as either drifts, currents, or streams. Drifts, such as the North Atlantic Drift Current, involve the forward movement of surface ocean water under the influence of the prevailing wind. Currents, such as the Labrador Current, involve the movement of oceanic water in a more definite direction at a greater velocity than drifts. Streams, such as the Gulf Stream, involve movement of larger masses of ocean water with greater velocity than drifts or currents.

↑ Return to Menu

Upwelling in the context of Central American Seaway

The Central American Seaway (also known as the Panamanic Seaway, Inter-American Seaway and Proto-Caribbean Seaway) was a prehistoric body of water that once connected the Pacific Ocean to the Atlantic Ocean, separating North America from South America. It formed during the Jurassic (200–154 Ma) during the initial breakup of the supercontinent Pangaea into Laurasia and Gondwana, forming a mediterranean sea between the Panthalassia and Tethys Ocean, and finally closed when the Isthmus of Panama was formed by volcanic activity in the late Pliocene (2.76–2.54 Ma). The modern-day remnants of the seaway are the Gulf of Mexico, Caribbean Sea and the Central Atlantic region around the Sargasso Sea.

The closure of the Central American Seaway had tremendous effects on oceanic circulation and the biogeography of the adjacent seas, isolating many species and triggering speciation and diversification of tropical and sub-tropical marine fauna. The inflow of nutrient-rich water of deep Pacific origin into the Caribbean was blocked and so local species had to adapt to an environment of lower productivity. It had an even larger impact on terrestrial life. The seaway had isolated South America for much of the Cenozoic, which allowed the evolution of a wholly unique diverse mammalian fauna there. When it closed, a faunal exchange with North America ensued and led to the extinction of many of the native South American forms.

↑ Return to Menu

Upwelling in the context of Antarctic Convergence

The Antarctic Convergence or Antarctic Polar Front is a marine belt encircling Antarctica, varying in latitude seasonally, where cold, northward-flowing Antarctic waters meet the relatively warmer waters of the sub-Antarctic. The line separates the clockwise Antarctic circumpolar current from other oceans. Antarctic waters predominantly sink beneath the warmer subantarctic waters, while associated zones of mixing and upwelling create a zone very high in marine productivity, especially for Antarctic krill.

This line, like the Arctic tree line, is a natural boundary rather than an artificial one, such as the borders of nations and time zones. It not only separates two hydrological regions, but also separates areas of distinctive marine life and climates.

↑ Return to Menu

Upwelling in the context of Ocean stratification

Ocean stratification is the natural separation of an ocean's water into horizontal layers by density. This is generally stable stratification, because warm water floats on top of cold water, and heating is mostly from the sun, which reinforces that arrangement. Stratification is reduced by wind-forced mechanical mixing, but reinforced by convection (warm water rising, cold water sinking). Stratification occurs in all ocean basins and also in other water bodies. Stratified layers are a barrier to the mixing of water, which impacts the exchange of heat, carbon, oxygen and other nutrients. The surface mixed layer is the uppermost layer in the ocean and is well mixed by mechanical (wind) and thermal (convection) effects. Climate change is causing the upper ocean stratification to increase.

Due to upwelling and downwelling, which are both wind-driven, mixing of different layers can occur through the rise of cold nutrient-rich and sinking of warm water, respectively. Generally, layers are based on water density: heavier, and hence denser, water is below the lighter water, representing a stable stratification. For example, the pycnocline is the layer in the ocean where the change in density is largest compared to that of other layers in the ocean. The thickness of the thermocline is not constant everywhere and depends on a variety of variables.

↑ Return to Menu

Upwelling in the context of Thermohaline circulation

Thermohaline circulation (THC) is a part of the large-scale ocean circulation driven by global density gradients formed by surface heat and freshwater fluxes. The name thermohaline is derived from thermo-, referring to temperature, and haline, referring to salt content—factors which together determine the density of sea water.

Wind-driven surface currents (such as the Gulf Stream) travel polewards from the equatorial Atlantic Ocean, cooling and sinking en-route to higher latitudes - eventually becoming part of the North Atlantic Deep Water - before flowing into the ocean basins. While the bulk of thermohaline water upwells in the Southern Ocean, the oldest waters (with a transit time of approximately 1000 years) upwell in the North Pacific; extensive mixing takes place between the ocean basins, reducing the difference in their densities, forming the Earth's oceans a global system. The water in these circuits transport energy - as heat - and mass - as dissolved solids and gases - around the globe. Consequently, the state of the circulation greatly impacts the climate of Earth.

↑ Return to Menu

Upwelling in the context of Stratification (water)

Stratification in water is the formation in a body of water of relatively distinct and stable layers by density. It occurs in all water bodies where there is stable density variation with depth. Stratification is a barrier to the vertical mixing of water, which affects the exchange of heat, carbon, oxygen and nutrients. Wind-driven upwelling and downwelling of open water can induce mixing of different layers through the stratification, and force the rise of denser cold, nutrient-rich, or saline water and the sinking of lighter warm or fresher water, respectively. Layers are based on water density: denser water remains below less dense water in stable stratification in the absence of forced mixing.

Stratification occurs in several kinds of water bodies, such as oceans, lakes, estuaries, flooded caves, aquifers and some rivers.

↑ Return to Menu