Universally quantified in the context of "Satisfiability"

Play Trivia Questions online!

or

Skip to study material about Universally quantified in the context of "Satisfiability"

Ad spacer

⭐ Core Definition: Universally quantified

In mathematical logic, a universal quantification is a type of quantifier, a logical constant which is interpreted as "given any", "for all", "for every", or "given an arbitrary element". It expresses that a predicate can be satisfied by every member of a domain of discourse. In other words, it is the predication of a property or relation to every member of the domain. It asserts that a predicate within the scope of a universal quantifier is true of every value of a predicate variable.

It is usually denoted by the turned A (∀) logical operator symbol, which, when used together with a predicate variable, is called a universal quantifier ("x", "∀(x)", or sometimes by "(x)" alone). Universal quantification is distinct from existential quantification ("there exists"), which only asserts that the property or relation holds for at least one member of the domain.

↓ Menu

>>>PUT SHARE BUTTONS HERE<<<
In this Dossier

Universally quantified in the context of Identity (mathematics)

In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables within a certain domain of discourse. In other words, A = B is an identity if A and B define the same functions, and an identity is an equality between functions that are differently defined. For example, and are identities. Identities are sometimes indicated by the triple bar symbol instead of =, the equals sign. Formally, an identity is a universally quantified equality.

↑ Return to Menu