Universal Serial Bus in the context of Serial port


Universal Serial Bus in the context of Serial port

Universal Serial Bus Study page number 1 of 1

Play TriviaQuestions Online!

or

Skip to study material about Universal Serial Bus in the context of "Serial port"


⭐ Core Definition: Universal Serial Bus

Universal Serial Bus (USB) is an industry standard, developed by USB Implementers Forum (USB-IF), for digital data transmission and power delivery between many types of electronics. It specifies the architecture, in particular the physical interfaces, and communication protocols to and from hosts, such as personal computers, to and from peripheral devices, e.g. displays, keyboards, and mass storage devices, and to and from intermediate hubs, which multiply the number of a host's ports.

Introduced in 1996, USB was originally designed to standardize the connection of peripherals to computers, replacing various interfaces such as serial ports, parallel ports, game ports, and Apple Desktop Bus (ADB) ports. Early versions of USB became commonplace on a wide range of devices, such as keyboards, mice, cameras, printers, scanners, flash drives, smartphones, game consoles, and power banks. USB has since evolved into a standard to replace virtually all common ports on computers, mobile devices, peripherals, power supplies, and manifold other small electronics.

↓ Menu
HINT:

In this Dossier

Universal Serial Bus in the context of Isochronous

A sequence of events is isochronous if the events occur regularly, or at equal time intervals. The term isochronous is used in several technical contexts, but usually refers to the primary subject maintaining a constant period or interval (the reciprocal of frequency), despite variations in other measurable factors in the same system. Isochronous timing is a characteristic of a repeating event, whereas synchronous timing refers to the relationship between two or more events.

View the full Wikipedia page for Isochronous
↑ Return to Menu

Universal Serial Bus in the context of Human interface device

A human interface device (HID) is a type of computer device usually used by humans that takes input from or provides output to humans.

The term "HID" most commonly refers to the USB HID specification. The term was coined by Mike Van Flandern of Microsoft when he proposed that the USB committee create a Human Input Device class working group. The working group was renamed as the Human Interface Device class at the suggestion of Tom Schmidt of DEC because the proposed standard supported bidirectional communication.

View the full Wikipedia page for Human interface device
↑ Return to Menu

Universal Serial Bus in the context of Bus (computing)

In computer architecture, a bus (historically also called a data highway or databus) is a communication system that transfers data between components inside a computer or between computers. It encompasses both hardware (e.g., wires, optical fiber) and software, including communication protocols. At its core, a bus is a shared physical pathway, typically composed of wires, traces on a circuit board, or busbars, that allows multiple devices to communicate. To prevent conflicts and ensure orderly data exchange, buses rely on a communication protocol to manage which device can transmit data at a given time.

Buses are categorized based on their role, such as system buses (also known as internal buses, internal data buses, or memory buses) connecting the CPU and memory. Expansion buses, also called peripheral buses, extend the system to connect additional devices, including peripherals. Examples of widely used buses include PCI Express (PCIe) for high-speed internal connections and Universal Serial Bus (USB) for connecting external devices.

View the full Wikipedia page for Bus (computing)
↑ Return to Menu

Universal Serial Bus in the context of FIDO2 Project

The FIDO (Fast IDentity Online) Alliance is an open industry association launched in February 2013 whose stated mission is to develop and promote authentication standards that "help reduce the world’s over-reliance on passwords". FIDO addresses the lack of interoperability among devices that use strong authentication and reduces the problems users face creating and remembering multiple usernames and passwords.

FIDO supports a full range of authentication technologies, including biometrics such as fingerprint and iris scanners, voice and facial recognition, as well as existing solutions and communications standards, such as Trusted Platform Modules (TPM), USB security tokens, embedded Secure Elements (eSE), smart cards, and near-field communication (NFC). The USB security token device may be used to authenticate using a simple password (e.g. four-digit PIN) or by pressing a button. The specifications emphasize a device-centric model. Authentication over an insecure channel happens using public-key cryptography. The user's device registers the user to a server by registering a public key. To authenticate the user, the device signs a challenge from the server using the private key that it holds. The keys on the device are unlocked by a local user gesture such as a biometric or pressing a button.

View the full Wikipedia page for FIDO2 Project
↑ Return to Menu

Universal Serial Bus in the context of Hot-swap

Hot swapping is the replacement or addition of components to a computer system without stopping, shutting down, or rebooting the system. Hot plugging describes only the addition of components to a running computer system. Components which have such functionality are said to be hot-swappable or hot-pluggable; likewise, components which do not are cold-swappable or cold-pluggable. Although the broader concept of hot swapping can apply to electrical or mechanical systems, it is usually mentioned in the context of computer systems.

An example of hot swapping is the express ability to pull a Universal Serial Bus (USB) peripheral device, such as a thumb drive, mouse, keyboard, or printer out of a computer's USB slot without powering down the computer first.

View the full Wikipedia page for Hot-swap
↑ Return to Menu

Universal Serial Bus in the context of Arduino

Arduino (/ɑːrˈdwn/) is an Italian open-source hardware and software company owned by Qualcomm, project, and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Its hardware products are licensed under a CC BY-SA license, while the software is licensed under the GNU Lesser General Public License (LGPL) or the GNU General Public License (GPL), permitting the manufacture of Arduino boards and software distribution by anyone. Arduino boards are available commercially from the official website or through authorized distributors.

Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards ('shields') or breadboards (for prototyping) and other circuits. The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages (Embedded C), using a standard API which is also known as the Arduino Programming Language, inspired by the Processing language and used with a modified version of the Processing IDE. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go.

View the full Wikipedia page for Arduino
↑ Return to Menu

Universal Serial Bus in the context of IRobot Create

iRobot Create is a hobbyist robot manufactured by iRobot that was introduced in 2007 and based on their Roomba vacuum cleaning platform. The iRobot Create is explicitly designed for robotics development and improves the experience beyond simply hacking the Roomba. The Create replaces its Roomba predecessor's vacuum cleaner hardware with a cargo bay that also houses a DB-9 port providing serial communication, digital input & output, analog input & output, and an electric power supply. The Create also has a 7-pin Mini-DIN serial port through which sensor data can be read and motor commands can be issued using the iRobot Roomba Open Interface (ROI) protocol.

The platform accepts virtually all accessories designed for iRobot's second generation Roomba 400 Series domestic robots and can also be programmed with the addition of iRobot's own Command Module (a microcontroller with a USB connector and four DE-9 expansion ports). As of 2013, the Command Module is no longer being sold. In 2014, iRobot replaced the original model with the Create 2, which is constructed from the chassis of remanufactured 600-series Roombas; instead of replacing the old command module, iRobot encourages the use of commodity single-board micro-controllers like Arduino and single-board computers like Raspberry Pi to provide additional processing power.

View the full Wikipedia page for IRobot Create
↑ Return to Menu

Universal Serial Bus in the context of Plug and Display

VESA Plug and Display (abbreviated as P&D) is a video connector that carries digital signals for monitors, such as flat panel displays and video projectors, ratified by Video Electronics Standards Association (VESA) in 1997. Introduced around the same time as the competing connectors for the Digital Visual Interface (DVI, 1999) and VESA's own Digital Flat Panel (DFP, 1999), it was marketed as a replacement for the VESA Enhanced Video Connector (EVC, 1994). Unlike DVI, it never achieved widespread implementation.

The P&D connector shares the 30-pin plus quad-coax layout of EVC, which carries digital video, analog video, and data over Universal Serial Bus (USB) and IEEE 1394 (FireWire). At a minimum, the P&D connector is required to carry digital video, in which case the connector is designated P&D-D; when both digital and analog video are included, the connector is designated P&D-A/D.

View the full Wikipedia page for Plug and Display
↑ Return to Menu

Universal Serial Bus in the context of Label printer

A label printer is a computer printer that prints on self-adhesive label material and/or card-stock (tags). A label printer with built-in keyboard and display for stand-alone use (not connected to a separate computer) is often called a label maker. Label printers are different from ordinary printers because they need to have special feed mechanisms to handle rolled stock, or tear sheet (fanfold) stock. Common connectivity for label printers include RS-232 serial, Universal Serial Bus (USB), parallel, Ethernet and various kinds of wireless. Label printers have a wide variety of applications, including supply chain management, retail price marking, packaging labels, blood and laboratory specimen marking, and fixed assets management.

View the full Wikipedia page for Label printer
↑ Return to Menu

Universal Serial Bus in the context of Peripheral bus

In computing, a peripheral bus is a computer bus designed to support computer peripherals like printers and hard drives. The term is generally used to refer to systems that offer support for a wide variety of devices, like Universal Serial Bus, as opposed to those that are dedicated to specific types of hardware. Serial AT Attachment, or SATA is designed and optimized for communication with mass storage devices.

This usage is not universal, some definitions of peripheral bus include any bus that is not a system bus, including examples like PCI. Others treat PCI and similar systems as a third category, the expansion bus.

View the full Wikipedia page for Peripheral bus
↑ Return to Menu